Previous Articles Next Articles
Jian Ren1, Zhijun Shen1,2, Wei Yan1, Guangwei Yuan1
Jian Ren, Zhijun Shen, Wei Yan, Guangwei Yuan. A CELL-CENTERED ALE METHOD WITH HLLC-2D RIEMANN SOLVER IN 2D CYLINDRICAL GEOMETRY[J]. Journal of Computational Mathematics, 2021, 39(5): 666-692.
[1] B.N. Azarenok, Realization of a second-order Godunov's scheme, Comput. Meth. Appl. Mech. Eng. 189(2000), 1031-1052. [2] B.N. Azarenok, Adaptive mesh redistribution method based on Godunov schemes, Comm. Math. Sci., 1(2003), 152-179. [3] D. Burton, T. Carney, N. Morgan, S. Sambasivan, and M. Shashkov, A cell centered Lagrangian Godunov-like method of solid dynamics, Comput. & Fluids, 83(2013), 33-47. [4] E.J. Caramana, D.E. Burton, M.J. Shashkov, P.P. Whalen, The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J. Comput. Phys., 146(1998), 227-262. [5] G. Carré, S. Del Pino, B. Després, E. Labourasse, A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension,J. Comput. Phys., 228(2009), 5160-5183. [6] G.X. Chen, H.Z. Tang, P.W. Zhang, Second-order accurate Godunov scheme for multicomponent Flows on Moving Triangular Meshes, J. Sci. Comput., 34(2008), 64-86. [7] J. Cheng and C.W. Shu, A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry, J. Comput. Phys., 229(2010), 7191-7206. [8] J. Cheng and C.W. Shu, Second order symmetry-preserving conservative Lagrangian scheme for compressible Euler equations in two-dimensional cylindrical coordinates, J. Comput. Phys., 272(2014), 245-265. [9] B. Després and C. Mazeran, Lagrangian gas dynamics in two dimensions and lagrangian systems, Arch. Rational Mech. Anal., 178(2005), 327-372. [10] J.K. Dukowicz, M.C. Cline, and F.S. Addessio, A general topology Godunov method. J. Comput. Phys., 82(1989), 29-63. [11] J.K. Dukowicz and B. Meltz, Vorticity errors in multidimensional Lagrangian codes, J. Comput. Phys., 99(1992), 115-134. [12] S.K. Godunov, A.V. Zabrodin, and M. Ya. Ivanov, et al., Numerical Solution of Multidimensional Problems of Gas Dynamics, (in Russian), Moscow, Nauka Press, 1976. [13] J.O. Langseth and R.J. LeVeque, A wave propagation method for 3D hyperbolic conservation laws. J. Comput. Phys., 165(2000), 126-166. [14] R. Li, T. Tang, P.W. Zhang, Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys., 170(2001), 562-588. [15] H. Luo, J.D. Baum, R. Lohner, On the computation of multi-material flows using ALE formulation, J. Comput. Phys., 194(2004), 304-328. [16] P.H. Maire, R. Abgrall, J. Breil and J. Ovadia, A cell-centered Lagrangian scheme for compressible flow problems, SIAM J. Sci. Comput., 29:4(2007), 1781-1824. [17] P.H. Maire, A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured mesh, J. Comput. Phys., 228:7(2009), 2391-2425. [18] P.H. Maire, A high-order cell-centered Lagrangian scheme for compressible fluid flows in twodimensional cylindrical geometry, J. Comput. Phys.,228:18(2009), 6882-6915. [19] R. Loubére, P. H. Maire, M. Shashkov. ReALE:A Reconnection Arbitrary-Lagrangian-Eulerian method in cylindrical geometry. Comput. & Fluids, 46(2011), 59-69. [20] M. Friess, J. Breil, P.H. Maire, M. Shashkov. A multi-material CCALE-MOF approach in cylindrical Geometry, Commun. Comput. Phys., 15(2014), 330-364. [21] L. Margolin, M. Shashkov, M. Taylor, Symmetry-preserving discretizations for Lagrangian gas dynamics, in:P. NeittaanmSki, T. Tiihonen, P. Tarvainen (Eds.), Proceedings of the Third European Conference Numerical Mathematics and Advanced Applications, World Scientific, (2000), 725-732. [22] N. Morgan, M. Kenamond, D. Burton, T. Carney, and D. Ingraham, An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics, J. Comput. Phys., 250(2013), 527-554. [23] W.F. Noh, Errors for calculations of strong shocks using artificial viscosity and an artificial heat flux, J. Comput. Phys., 72(1987), 78-120. [24] L. Sedov, Similarity and Dimensional Methods in Mechanics, Academic Press, 1959. [25] Z.J. Shen, W. Yan, and G.W. Yuan, A robust and contact resolving Riemann solver on unstructured mesh, Part I, Euler method, J. Comput. Phys., 268(2014), 432-455. [26] Z.J. Shen, W. Yan, and G.W. Yuan, A robust and contact resolving Riemann solver on unstructured mesh, Part Ⅱ, ALE method, J. Comput. Phys., 268(2014), 456-484. [27] Z.J. Shen, X. Li, J. Ren. Comparisons of some difference forms for compressible flow in cylindrical geometry on ALE framework, Appl. Math. Mech., 37:11(2016), 1571-1586. [28] E.F. Toro, M. Spruce and W. Speares, Restoration of the contact surface in the HLL-Riemann solver, Shock Wave, 4(1994), 25-34. [29] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin, 2008. [30] T.J. Barth, D.C. Jespersen, The design and application of upwind schemes on unstructured meshes, 27th Aerospace Science Meeting, AIAA Paper 89-0366, Reno, Nevada, 1989 [31] R. Abgrall, How to prevent oscillations in multicomponent flow calculations:a quasi conservative approach, J. Comput. Phys., 125(1996), 150-160. [32] N R. Morgan, K.N. Lipnikov, D.E. Burton, M.A. Kenamond, A Lagrangian staggered grid Godunov-like approach for hydrodynamics, J. Comput. Phys., 259(2014), 568-597. |
[1] | Tianliang Hou, Chunmei Liu, Chunlei Dai, Luoping Chen, Yin Yang. TWO-GRID ALGORITHM OF H1-GALERKIN MIXED FINITE ELEMENT METHODS FOR SEMILINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 667-685. |
[2] | Huan Liu, Xiangcheng Zheng, Hongfei Fu. ANALYSIS OF A MULTI-TERM VARIABLE-ORDER TIME-FRACTIONAL DIFFUSION EQUATION AND ITS GALERKIN FINITE ELEMENT APPROXIMATION [J]. Journal of Computational Mathematics, 2022, 40(5): 814-834. |
[3] | Rong Zhang, Hongqi Yang. A DISCRETIZING LEVENBERG-MARQUARDT SCHEME FOR SOLVING NONLIEAR ILL-POSED INTEGRAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 686-710. |
[4] | Abdelhamid Zaghdani, Sayed Sayari, Miled EL Hajji. A NEW HYBRIDIZED MIXED WEAK GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS* [J]. Journal of Computational Mathematics, 2022, 40(4): 499-516. |
[5] | Didi Lv, Xiaoqun Zhang. A GREEDY ALGORITHM FOR SPARSE PRECISION MATRIX APPROXIMATION [J]. Journal of Computational Mathematics, 2021, 39(5): 693-707. |
[6] | Yuping Zeng, Feng Wang, Zhifeng Weng, Hanzhang Hu. A POSTERIORI ERROR ESTIMATES FOR A MODIFIED WEAK GALERKIN FINITE ELEMENT APPROXIMATION OF SECOND ORDER ELLIPTIC PROBLEMS WITH DG NORM [J]. Journal of Computational Mathematics, 2021, 39(5): 755-776. |
[7] | Tamal Pramanick. ERROR ESTIMATES FOR TWO-SCALE COMPOSITE FINITE ELEMENT APPROXIMATIONS OF NONLINEAR PARABOLIC EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(4): 493-517. |
[8] | Yong Liu, Chi-Wang Shu, Mengping Zhang. SUB-OPTIMAL CONVERGENCE OF DISCONTINUOUS GALERKIN METHODS WITH CENTRAL FLUXES FOR LINEAR HYPERBOLIC EQUATIONS WITH EVEN DEGREE POLYNOMIAL APPROXIMATIONS [J]. Journal of Computational Mathematics, 2021, 39(4): 518-537. |
[9] | Qingguo Hong, Jinchao Xu. UNIFORM STABILITY AND ERROR ANALYSIS FOR SOME DISCONTINUOUS GALERKIN METHODS [J]. Journal of Computational Mathematics, 2021, 39(2): 283-310. |
[10] | Xuhong Yu, Lusha Jin, Zhongqing Wang. EFFICIENT AND ACCURATE CHEBYSHEV DUAL-PETROV-GALERKIN METHODS FOR ODD-ORDER DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 43-62. |
[11] | Qilong Zhai, Xiaozhe Hu, Ran Zhang. THE SHIFTED-INVERSE POWER WEAK GALERKIN METHOD FOR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2020, 38(4): 606-623. |
[12] | Qianting Ma. IMAGE DENOISING VIA TIME-DELAY REGULARIZATION COUPLED NONLINEAR DIFFUSION EQUATIONS [J]. Journal of Computational Mathematics, 2020, 38(3): 417-436. |
[13] | Leiwu Zhang. A STOCHASTIC MOVING BALLS APPROXIMATION METHOD OVER A SMOOTH INEQUALITY CONSTRAINT [J]. Journal of Computational Mathematics, 2020, 38(3): 528-546. |
[14] | Baiju Zhang, Yan Yang, Minfu Feng. A C0-WEAK GALERKIN FINITE ELEMENT METHOD FOR THE TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS IN STREAM-FUNCTION FORMULATION [J]. Journal of Computational Mathematics, 2020, 38(2): 310-336. |
[15] | Yijun Zhong, Chongjun Li. PIECEWISE SPARSE RECOVERY VIA PIECEWISE INVERSE SCALE SPACE ALGORITHM WITH DELETION RULE [J]. Journal of Computational Mathematics, 2020, 38(2): 375-394. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||