Previous Articles Next Articles
Bin Huang1, Aiguo Xiao1, Gengen Zhang2
Bin Huang, Aiguo Xiao, Gengen Zhang. IMPLICIT-EXPLICIT RUNGE-KUTTA-ROSENBROCK METHODS WITH ERROR ANALYSIS FOR NONLINEAR STIFF DIFFERENTIAL EQUATIONS[J]. Journal of Computational Mathematics, 2021, 39(4): 599-620.
[1] U.M. Ascher, S.J. Ruuth and R.J. Spiteri, Implicit-explicit Runge-Kutta methods for time dependent partial differential equations, Appl. Numer. Math., 25(1997), 151-167. [2] F. Bassi, L. Botti, A. Colombo, A. Ghidoni and F. Massa, Linearly implicit Rosenbrock-type Runge-Kutta schemes applied to the discontinuous Galerkin solution of compressible and incompressible unsteady flows, Comput. Fluids, 118(2015), 305-320. [3] S. Boscarino, Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic systems, SIAM J. Numer. Anal., 45(2007), 1600-1621. [4] S. Boscarino, L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, SIAM J. Sci. Comput., 35(2013), A22-A51. [5] S. Boscarino, P.G. Lefloch and G. Russo, High-order asymptotic-preserving methods for fully nonlinear relaxation problems, SIAM J. Sci. Comput., 36(2014), A377-A395. [6] S. Boscarino and L. Pareschi, On the asymptotic properties of IMEX Runge-Kutta schemes for hyperbolic balance laws, J. Comput. Appl. Math., 316(2017), 60-73. [7] S. Boscarino, J. Qiu and G. Russo, Implicit-explicit integral deferred correction methods for stiff problems, SIAM J. Sci. Comput., 40(2018), A787-A816. [8] J.H. Chaudhry, J.B. Collins and J.N. Shadid, A posteriori error estimation for multi-stage RungeKutta IMEX schemes, Appl. Numer. Math., 117(2017), 36-49. [9] S. Conde, S. Gottlieb, Z.J. Grant and J.N. Shadid, Implicit and implicit-explicit strong stability preserving Runge-Kutta methods with high linear order, J. Sci. Comput., 73(2017), 667-690. [10] M.S. Espedal and K.H. Karlsen, Numerical solution of reservoir flow models based on large time step operator splitting algorithms, In Filtration in Porous Media and Industrial Applications, Lect. Notes Math., 1734(2000), 9-77. [11] D.J. Gardner, J.E. Guerra, F.P. Hamon, D.R. Reynolds, P.A. Ullrich and C.S. Woodward, Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models, Geosci. Model Dev., 11(2018), 1497-1515. [12] S. González-Pinto, E. Hairer, D. Hernández-Abreu and S. Pérez-Rodríguez, AMF-type W-methods for parabolic problems with mixed derivatives, SIAM J. Sci. Comput., 40(2018), A2905-A2929. [13] E. Hairer, G. Bader and C.H. Lubich, On the stability of semi-implicit methods for ordinary differential equations, BIT Numer. Math., 22(1982), 211-232. [14] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, Springer, Berlin 1993. [15] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and DifferentialAlgebraic Problems, Springer, Berlin, 1996. [16] E. Hairer, C.H. Lubich and M. Roche, Error of Rosenbrock methods for stiff problems studied via differential algebraic equations, BIT Numer. Math., 29(1989), 77-90. [17] I. Higueras, N. Happenhofer, O. Koch and F. Kupka, Optimized strong stability preserving IMEX Runge-Kutta methods, J. Comput. Appl. Math., 272(2014), 116-140. [18] I. Higueras and T. Roldán, Construction of additive semi-implicit Runge-Kutta methods with low-storage requirements, J. Sci. Comput., 67(2016), 1019-1042. [19] M. Hochbruck, A. Ostermann and J. Schweitzer, Exponential Rosenbrock-type methods, SIAM J. Numer. Anal., 47(2009), 786-803. [20] G. Izzo and Z. Jackiewicz, Highly stable implicit-explicit Runge-Kutta methods, Appl. Numer. Math., 113(2017), 71-92. [21] A. Kanevsky, M.H. Carpenter, D. Gottlieb and J.S. Hesthaven, Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes, J. Comput. Phys., 225(2007), 1753-1781. [22] O. Knoth and R. Wolke, Implicit-explicit Runge-Kutta methods for computing atmospheric reactive flows, Appl. Numer. Math., 28(1998), 327-341. [23] S. Li, Theory of Computational Methods for Stiff Differential Equation, Hunan Science and Technology Press, Changsha, 1997(in Chinesse). [24] J.L. Liu and A.G. Xiao, Convergence results of two-step W-methods for two-parameter singular perturbation problems, Appl. Math. Comput., 189(2007), 669-681. [25] H.N. Najm, P.S. Wyckoff and O.M. Knio, A semi-implicit numerical scheme for reacting flow I. Stiff chemistry, J. Comput. Phys., 143(1998), 381-402. [26] J. Schütz and K. Kaiser, A new stable splitting for singularly perturbed ODEs, Appl. Numer. Math., 107(2016), 18-33. [27] K. Strehmel, R. Weiner and M. Büttner, Order results for Rosenbrock type methods on classes of stiff equations, Numer. Math., 59(1991), 723-737. [28] P. Ullrich and C. Jablonowski, Operator-split Runge-Kutta-Rosenbrock methods for nonhydrostatic atmospheric models, Mon. Weather Rev., 140(2012), 1257-1284. [29] J.G. Verwer, W.H. Hundsdorfer and J.G. Bloom, Numerical time integration for air poliution models, Surveys Math. Indust, 10(2002), 107-174. [30] J.G. Verwer and B.P. Sommeijer, An implicit-explicit Runge-Kutta-Chebyshev scheme for diffusion-reaction equations, SIAM J. Sci. Comput., 25(2004), 1824-1835. [31] C.J. Vogl, A. Steyer, D.R. Reynolds, P.A. Ullrich and C.S. Woodward, Evaluation of implicitexplicit additive Runge-Kutta integrators for the HOMME-NH dynamical core, (2019). https://arXiv:1904.10115v1[math.NA]. [32] Z. Wen and A.G. Xiao, Quantitative error analysis of Rosenbrock methods for multiply-stiff singular perturbation problems, Mathematica Numerica Sinica, 28(2006), 419-432. [33] A.G. Xiao, Convergence results of Runge-Kutta methods for multiply-stiff singular perturbation problems, J. Comput. Math., 20(2002), 325-336. [34] A.G. Xiao, G.G. Zhang and X. Yi, Two classes of implicit-explicit multistep methods for nonlinear stiff initial-value problems, Appl. Math. Comput., 247(2014), 47-60. [35] C. Yue, A.G. Xiao and H. Liu, Nonlinear stability and B-convergence of additive Runge-Kutta methods for nonlinear stiff problems, Adv. Appl. Math. Mech., 7(2015), 472-495. [36] E. Zharovsky, A. Sandu and H. Zhang, A class of implicit-explicit two-step Runge-Kutta methods, SIAM J. Numer. Anal., 53(2015), 321-341. [37] X. Zhong, Additive semi-implicit Runge-Kutta methods for computing high-speed nonequilibrium reactive flows, J. Comput. Phys., 128(1996), 19-31. |
[1] | Baiying Dong, Xiufeng Feng, Zhilin Li. AN L∞ SECOND ORDER CARTESIAN METHOD FOR 3D ANISOTROPIC INTERFACE PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(6): 882-912. |
[2] | Darko Volkov. A STOCHASTIC ALGORITHM FOR FAULT INVERSE PROBLEMS IN ELASTIC HALF SPACE WITH PROOF OF CONVERGENCE [J]. Journal of Computational Mathematics, 2022, 40(6): 955-976. |
[3] | Yanping Chen, Qiling Gu, Qingfeng Li, Yunqing Huang. A TWO-GRID FINITE ELEMENT APPROXIMATION FOR NONLINEAR TIME FRACTIONAL TWO-TERM MIXED SUB-DIFFUSION AND DIFFUSION WAVE EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(6): 936-954. |
[4] | Mingming Zhao, Yongfeng Li, Zaiwen Wen. A STOCHASTIC TRUST-REGION FRAMEWORK FOR POLICY OPTIMIZATION [J]. Journal of Computational Mathematics, 2022, 40(6): 1004-1030. |
[5] | Rong Zhang, Hongqi Yang. A DISCRETIZING LEVENBERG-MARQUARDT SCHEME FOR SOLVING NONLIEAR ILL-POSED INTEGRAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 686-710. |
[6] | Wei Zhang. STRONG CONVERGENCE OF THE EULER-MARUYAMA METHOD FOR A CLASS OF STOCHASTIC VOLTERRA INTEGRAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(4): 607-623. |
[7] | Yaolin Jiang, Zhen Miao, Yi Lu. WAVEFORM RELAXATION METHODS FOR LIE-GROUP EQUATIONS* [J]. Journal of Computational Mathematics, 2022, 40(4): 649-666. |
[8] | Xiaonian Long, Qianqian Ding. A SECOND ORDER UNCONDITIONALLY CONVERGENT FINITE ELEMENT METHOD FOR THE THERMAL EQUATION WITH JOULE HEATING PROBLEM [J]. Journal of Computational Mathematics, 2022, 40(3): 354-372. |
[9] | Siyuan Qi, Guangqiang Lan. STRONG CONVERGENCE OF THE EULER-MARUYAMA METHOD FOR NONLINEAR STOCHASTIC VOLTERRA INTEGRAL EQUATIONS WITH TIME-DEPENDENT DELAY [J]. Journal of Computational Mathematics, 2022, 40(3): 437-452. |
[10] | Xiaoyu Wang, Ya-xiang Yuan. STOCHASTIC TRUST-REGION METHODS WITH TRUST-REGION RADIUS DEPENDING ON PROBABILISTIC MODELS [J]. Journal of Computational Mathematics, 2022, 40(2): 294-334. |
[11] | Mohammed Harunor Rashid. METRICALLY REGULAR MAPPING AND ITS UTILIZATION TO CONVERGENCE ANALYSIS OF A RESTRICTED INEXACT NEWTON-TYPE METHOD [J]. Journal of Computational Mathematics, 2022, 40(1): 44-69. |
[12] | Yang Chen, Chunlin Wu. DATA-DRIVEN TIGHT FRAME CONSTRUCTION FOR IMPULSIVE NOISE REMOVAL [J]. Journal of Computational Mathematics, 2022, 40(1): 89-107. |
[13] | Qianqian Chu, Guanghui Jin, Jihong Shen, Yuanfeng Jin. NUMERICAL ANALYSIS OF CRANK-NICOLSON SCHEME FOR THE ALLEN-CAHN EQUATION [J]. Journal of Computational Mathematics, 2021, 39(5): 655-665. |
[14] | Lu Zhang, Qifeng Zhang, Hai-wei Sun. A FAST COMPACT DIFFERENCE METHOD FOR TWO-DIMENSIONAL NONLINEAR SPACE-FRACTIONAL COMPLEX GINZBURG-LANDAU EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(5): 708-732. |
[15] | Xia Cui, Guangwei Yuan, Fei Zhao. ANALYSIS ON A NUMERICAL SCHEME WITH SECOND-ORDER TIME ACCURACY FOR NONLINEAR DIFFUSION EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(5): 777-800. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||