Previous Articles Next Articles
Yaozong Tang1,2, Qingzhi Yang1,2, Gang Luo1
Yaozong Tang, Qingzhi Yang, Gang Luo. CONVERGENCE ANALYSIS ON SS-HOPM FOR BEC-LIKE NONLINEAR EIGENVALUE PROBLEMS[J]. Journal of Computational Mathematics, 2021, 39(4): 621-632.
[1] W.Z. Bao and Y.Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation,Kinet. Relat. Mod., 6(2013), 1-135. [2] W.Z. Bao, I.-L. Chern and Y.Z. Zhang, Efficient numerical methods for computing ground states of spin-1 Bose-Einstein coandensates based on their characterizations, J. Comput. Phys., 253(2013), 189-208. [3] X. Antoine and R. Duboscq, Modeling and computation of Bose-Einstein condensates: stationary states, nucleation, dynamics, stochasticity, Lecture Notes in Mathematics, Springer-verlag, 2015. [4] S.H. Jia, H.H. Xie, M.T. Xie and F. Xu, A full multigrid method for nonlinear eigenvalue problems. Sci. China Math., 59:10(2016), 2037-2048. [5] E. Cancés, R. Chakir and Y. Maday, Numerical analysis of nonlinear eigenvalue problems, J. Sci. Comput., 45(2010), 90-117. [6] H.H. Xie, A multigrid method for nonlinear eigenvalue problems (in Chinese), Sci. China Math., 45(2015), 1193-1204. [7] X.M. Wu, Z.W. Wen and W.Z. Bao, A regularized Newton method for computing ground states of Bose-Einstein condensates, J. Sci. Comput., 73:1(2017), 303-329. [8] D. I and K. P, A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy withrotation, SIAM J. Sci. Comput., 32(2010), 2447-2467. [9] J. Hu, B. Jiang, X. Liu and Z.W. Wen, A note on semidefinite programming relaxations for polynomial optimization over a single sphere. Sci. China Math., 59:8(2016), 1543-1560. [10] J. Nocedal and S.J. Wright, Numerical Optimization, Springer, 2006. [11] S. K.Adhikari, Numerical solution of the two-dimensional Gross-Pitaevskii equation for trapped interacting atoms, Phys. Lett. A, 265:1-2(2000), 91-96. [12] M. Edwards and K. Burnett, Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms. Phys. Lett. A, 51:2(1995), 1382-1386. [13] Q.Z. Yang, P.F. Huang and Y.J. Liu, Numerical examples for solving a class of nonlinear eigenvalue problems (in Chinese), J. Numer. Methods Comput. Appl., 2(2019), 130-142. [14] Y.Z. Tang, Q.Z. Yang and P.F. Huang, SS-HOPM for BEC-like nonlinear eigenvalue problems, Numerical Mathematics: A Journal of Chinese Universities, 42:2(2020), 163-192. [15] S. Lojasiewicz, Ensembles Semi-Analytiques, Lectures Notes IHES (Bures-sur-Yvette), 1965. [16] H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math. Program., 116:1-2(2009), 5-16. [17] H. Attouch, J. Bolte, P. Redont and A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-L ojasiewicz inequality, Math. Oper. Res., 35:2(2010), 438-457. [18] H. Attouch, J. Bolte and B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Math. Program., 137:1-2 Ser. A (2013), 91-129. [19] R. Schneider and A. Uschmajew, Convergence results for projected line-search methods on varieties of low-rank matrices via Lojasiewicz inequality. SIAM J. Optmiz., 25:1(2015), 622-646. [20] A. Uschmajew, A new convergence proof for the higher-order power method and generalizations, Pac. J. Optim., 11(EPFL-ARTICLE-212438) (2015), 309-321. [21] P.-A. Absil, R. Manhony and B. Andrews, Convergence of the iterates of descent methods for analytic cost functions, SIAM J. Optimiz., 16:2(2005), 531-547. [22] G. Luo and Q.Z. Yang, The point-wise convergence of shifted symmetric high order power method, J. Ind. Mang. Optim., 2019.doi:10.3934/jimo.2019115. [23] T. G. Kolda, B. W. Bader and J. P. Kenny, Higher-Order Web Link Analysis Using Multilinear Algebra, Proceedings of the 5th IEEE International Conference on Data Mining, Houston, TX., 2005, pp. 242-249. [24] P. Comon, G. Golub, L.-H. Lim and B. Mourrain, Symmetric tensors and symmetric tensor rank, SCCM Technical Report 06-02, Stanford University, 2006. [25] L.Q. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40(2005), 1302-1324. [26] T. G. Kolda and J. R. Mayo, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix. Anal. Appl., 32:4(2011), 1095-1124. [27] L.-H. Lim, Singular values and eigenvalues of tensors: A variational approach, CAMSAP05: Proceeding of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, 129-132. [28] E. Kofidis and P. A. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix. Anal. Appl., 23(2002), 863-884. [29] S.L. Hu and G.Y. Li, Convergence rate analysis for the higher order power method in best rank one approximations of tensors, Numer. Math., 140:4(2018), 993-1031. |
[1] | Yuting Chen, Mingyuan Cao, Yueting Yang, Qingdao Huang. AN ADAPTIVE TRUST-REGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS [J]. Journal of Computational Mathematics, 2021, 39(3): 358-374. |
[2] | Hong Wang, Xin Liu, Xiaojun Chen, Yaxiang Yuan. SNIG PROPERTY OF MATRIX LOW-RANK FACTORIZATION MODEL [J]. Journal of Computational Mathematics, 2018, 36(3): 374-390. |
[3] | Liping Zhang, Liqun Qi, Yi Xu. LINEAR CONVERGENCE OF THE LZI ALGORITHM FOR WEAKLY POSITIVE TENSORS [J]. Journal of Computational Mathematics, 2012, 30(1): 24-33. |
[4] | Hua Dai, Zhong-Zhi Bai. ON EIGENVALUE BOUNDS AND ITERATION METHODS FOR DISCRETE ALGEBRAIC RICCATI EQUATIONS [J]. Journal of Computational Mathematics, 2011, 29(3): 341-366. |
[5] | Hua Dai, Zhong-Zhi Bai. ON SMOOTH LU DECOMPOSITIONS WITH APPLICATIONS TO SOLUTIONS OF NONLINEAR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2010, 28(6): 745-766. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||