Previous Articles Next Articles
Lu Zhang1, Qifeng Zhang2, Hai-wei Sun3
Lu Zhang, Qifeng Zhang, Hai-wei Sun. A FAST COMPACT DIFFERENCE METHOD FOR TWO-DIMENSIONAL NONLINEAR SPACE-FRACTIONAL COMPLEX GINZBURG-LANDAU EQUATIONS[J]. Journal of Computational Mathematics, 2021, 39(5): 708-732.
[1] I.S. Aranson, L. Kramer, The world of the complex Ginzburg-Landau equation, Reviews of Modern Physics, 74(2002), 99-143. [2] S. Arshed, Soliton solutions of fractional complex Ginzburg-Landau equation with Kerr law and non-Kerr law media, Optik, 160(2018), 322-332. [3] C. Çelik, M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, Journal of Computational Physics, 231:4(2012), 1743-1750. [4] R. Chan, X.Q. Jin, An Introduction to Iterative Toeplitz Solvers, SIAM, Philadelphia, 2007. [5] R. Chan, M. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Review, 38(1996), 427-482. [6] X. Cheng, H. Qin, J. Zhang, A compact ADI scheme for two-dimensional fractional sub-diffusion equation with Neumann boundary condition, Applied Numerical Mathematics, 156(2020), 50-62. [7] R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965. [8] R. Gorenflo, F. Mainardi, Random walk models for space-fractional diffusion processes, Fractional Calculus and Applied Analysis, 1:2(1998), 167-191. [9] X.M. Gu, L. Shi, T.H. Liu, Well-posedness of the fractional Ginzburg-Landau equation, Applicable Analysis, 98:14(2018), 2545-2558. [10] B.L. Guo, Z.H. Huo, Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg-Landau equation, Fractional Calculus and Applied Analysis, 16:1(2013), 226-242. [11] D.D. He, K.J. Pan, An unconditionally stable linearized difference scheme for the fractional Ginzburg-Landau equation, Numerical Algorithms, 79:3(2018), 899-925. [12] X.Q. Jin, Developments and Applications of Block Toeplitz Iterative Solvers. Science Press & Kluwer Academic Publishers, Beijing/Dordrecht, The Netherlands, 2002. [13] N. Laskin, Fractional quantum mechanics, Physical Review E, 62(2000), 3135-3145. [14] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Physics Letters A, 268(2000), 298-305. [15] M. Li, C.M. Huang, An efficient difference scheme for the coupled nonlinear fractional GinzburgLandau equations with the fractional Laplacian, Numerical Methods for Partial Differential Equations, 35:1(2019), 394-421. [16] M. Li, C.M. Huang, N. Wang, Galerkin element method for the nonlinear fractional GinzburgLandau equation, Applied Numerical Mathematics, 118(2017), 131-149. [17] H.L. Liao, Z.Z. Sun, H.S. Shi, Error estimate of fourth-ordercompact scheme for linear Schrödinger equations, SIAM Journal on Numerical Analysis, 47(6) (2010), 4381-4401. [18] W.J. Liu, W.T. Yu, C.Y. Yang, M.L. Liu, Y.J. Zhang, M. Lei, Analytic solutions for the generalized complex Ginzburg-Landau equation in fiber lasers, Nonlinear Dynamics, 89(2017), 2933-2939. [19] H. Lu, P.W. Bates, S.J. Lü, M.J. Zhang, Dynamics of the 3-D fractional complex Ginzburg-Landau equation, Journal Differential Equations, 259(2015), 5276-5301. [20] H. Lu, S.J. Lü, Asymptotic dynamics of 2D fractional complex Ginzburg-Landau equation, International Journal of Bifurcation and Chaos, 23:2(2013), 1350202. [21] H. Lu, S.J. Lü, Random attractor for fractional Ginzburg-Landau equation with multiplicative noise, Taiwanese Journal of Mathematics, 18:2(2014), 435-450. [22] H. Lu, S.J. Lü, M.J. Zhang, Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation, Discrete and Continuous Dynamical Systems, 37:5(2017), 2539-2564. [23] V. Millot, Y. Sire, On a fractional Ginzburg-Landau equation and 1/2-Harmonic maps into spheres, Archive for Rational Mechanics and Analysis, 215(2015), 125-210. [24] A. Mohebbi, Fast and high-order numerical algorithms for the solution of multidimensional nonlinear fractional Ginzburg-Landau equation, The European Physical Journal Plus, 133:2(2018), 67, https://doi.org/10.1140/epjp/i2018-11846-x [25] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. [26] X.K. Pu, B.L. Guo, Well-posedness and dynamics for the fractional Ginzburg-Landau equation, Applicable Analysis, 92:2(2013), 31-33. [27] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003. [28] J. Shu, P. Li, J. Zhang, O. Liao, Random attractors for the stochastic coupled fractional GinzburgLandau equation with additive noise, Journal of Mathematical Physics, 56(2015), 102702. [29] Z.Z. Sun, The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations, Science Press, Beijing, 2009. [30] V. Tarasov, G. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction, Chaos, 16(2006), 023110. [31] V. Tarasov, G. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354(2005), 249-261. [32] N. Wang, C.M. Huang, An efficient split-step quasi-compact finite difference method for the nonlinear fractional Ginzburg-Landau equations, Computers and Mathematics with Applications, 75(2018), 2223-2242. [33] P.D. Wang, C.M. Huang, An efficient fourth-order in space difference scheme for the nonlinear fractional Ginzburg-Landau equation, BIT Numerical Mathematics, 58:3(2018), 783-805. [34] P.D. Wang, C.M. Huang, An implicit midpoint difference scheme for the fractional GinzburgLandau equation, Journal of Computational Physics, 312(2016), 31-49. [35] Y.S. Wu, Multiparticle quantum mechanics obeying fractional statistics, Physical Review Letters, 53(1984), 111-114. [36] J.W. Zhang, H.D. Han, H. Brunner, Numerical blow-up of semilinear parabolic PDEs on unbounded domains in $\mathbb{R}$2, Journal of Scientific Computing, 49(3) (2019), 367-382. [37] J.W. Zhang, Z.L. Xu, X.N. Wu, Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations:Two-dimensional case, Physical Review E, 79(4) (2009), 046711. [38] M. Zhang, G.F. Zhang, L.D. Liao, Fast iterative solvers and simulation for the space fractional Ginzburg-Landau equations Ginzburg-Landau equations, Computers and Mathematics with Applications, 78:5(2019), 1793-1800. [39] Q. Zhang, T. Li, Asymptotic stability of compact and linear θ-methods for space fractional delay generalized diffusion equation, Journal of Scientific Computing, 81(2019), 2413-2446. [40] Q. Zhang, X. Lin, K. Pan, Y. Ren, Linearized ADI schemes for two-dimensional space-fractional nonlinear Ginzburg-Landau equation, Computers and Mathematics with Applications, 80(2020), 1201-1220. [41] Q. Zhang, Y. Ren, X. Lin, Y. Xu, Uniform convergence of compact and BDF methods for the space fractional semilinear delay reaction-diffusion equations, Applied Mathematics and Computation, 358(2019), 91-110. [42] X. Zhao, Z.Z. Sun, Z.P. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation, SIAM Journal on Scientific Computing, 36:6(2014), 2865-2886. |
[1] | Baiying Dong, Xiufeng Feng, Zhilin Li. AN L∞ SECOND ORDER CARTESIAN METHOD FOR 3D ANISOTROPIC INTERFACE PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(6): 882-912. |
[2] | Darko Volkov. A STOCHASTIC ALGORITHM FOR FAULT INVERSE PROBLEMS IN ELASTIC HALF SPACE WITH PROOF OF CONVERGENCE [J]. Journal of Computational Mathematics, 2022, 40(6): 955-976. |
[3] | Yanping Chen, Qiling Gu, Qingfeng Li, Yunqing Huang. A TWO-GRID FINITE ELEMENT APPROXIMATION FOR NONLINEAR TIME FRACTIONAL TWO-TERM MIXED SUB-DIFFUSION AND DIFFUSION WAVE EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(6): 936-954. |
[4] | Mingming Zhao, Yongfeng Li, Zaiwen Wen. A STOCHASTIC TRUST-REGION FRAMEWORK FOR POLICY OPTIMIZATION [J]. Journal of Computational Mathematics, 2022, 40(6): 1004-1030. |
[5] | Mei Yang, Ren-Cang Li. HEAVY BALL FLEXIBLE GMRES METHOD FOR NONSYMMETRIC LINEAR SYSTEMS [J]. Journal of Computational Mathematics, 2022, 40(5): 711-727. |
[6] | Rong Zhang, Hongqi Yang. A DISCRETIZING LEVENBERG-MARQUARDT SCHEME FOR SOLVING NONLIEAR ILL-POSED INTEGRAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 686-710. |
[7] | Wei Zhang. STRONG CONVERGENCE OF THE EULER-MARUYAMA METHOD FOR A CLASS OF STOCHASTIC VOLTERRA INTEGRAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(4): 607-623. |
[8] | Yaolin Jiang, Zhen Miao, Yi Lu. WAVEFORM RELAXATION METHODS FOR LIE-GROUP EQUATIONS* [J]. Journal of Computational Mathematics, 2022, 40(4): 649-666. |
[9] | Xiaonian Long, Qianqian Ding. A SECOND ORDER UNCONDITIONALLY CONVERGENT FINITE ELEMENT METHOD FOR THE THERMAL EQUATION WITH JOULE HEATING PROBLEM [J]. Journal of Computational Mathematics, 2022, 40(3): 354-372. |
[10] | Siyuan Qi, Guangqiang Lan. STRONG CONVERGENCE OF THE EULER-MARUYAMA METHOD FOR NONLINEAR STOCHASTIC VOLTERRA INTEGRAL EQUATIONS WITH TIME-DEPENDENT DELAY [J]. Journal of Computational Mathematics, 2022, 40(3): 437-452. |
[11] | Xiaoyu Wang, Ya-xiang Yuan. STOCHASTIC TRUST-REGION METHODS WITH TRUST-REGION RADIUS DEPENDING ON PROBABILISTIC MODELS [J]. Journal of Computational Mathematics, 2022, 40(2): 294-334. |
[12] | Mohammed Harunor Rashid. METRICALLY REGULAR MAPPING AND ITS UTILIZATION TO CONVERGENCE ANALYSIS OF A RESTRICTED INEXACT NEWTON-TYPE METHOD [J]. Journal of Computational Mathematics, 2022, 40(1): 44-69. |
[13] | Yang Chen, Chunlin Wu. DATA-DRIVEN TIGHT FRAME CONSTRUCTION FOR IMPULSIVE NOISE REMOVAL [J]. Journal of Computational Mathematics, 2022, 40(1): 89-107. |
[14] | Qianqian Chu, Guanghui Jin, Jihong Shen, Yuanfeng Jin. NUMERICAL ANALYSIS OF CRANK-NICOLSON SCHEME FOR THE ALLEN-CAHN EQUATION [J]. Journal of Computational Mathematics, 2021, 39(5): 655-665. |
[15] | Yifen Ke, Changfeng Ma. MODIFIED ALTERNATING POSITIVE SEMIDEFINITE SPLITTING PRECONDITIONER FOR TIME-HARMONIC EDDY CURRENT MODELS [J]. Journal of Computational Mathematics, 2021, 39(5): 733-754. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||