Previous Articles Next Articles
Yuping Zeng1, Feng Wang2, Zhifeng Weng3, Hanzhang Hu1
Yuping Zeng, Feng Wang, Zhifeng Weng, Hanzhang Hu. A POSTERIORI ERROR ESTIMATES FOR A MODIFIED WEAK GALERKIN FINITE ELEMENT APPROXIMATION OF SECOND ORDER ELLIPTIC PROBLEMS WITH DG NORM[J]. Journal of Computational Mathematics, 2021, 39(5): 755-776.
[1] M. Ainsworth, A posteriori error estimation for discontinuous Galerkin finite element approximation, SIAM J. Numer. Anal., 45(2007), 1777-1798. [2] M. Ainsworth and G. Fu, Fully computable a posteriori error bounds for hybridizable discontinuous Galerkin finite element approximations, J. Sci. Comput., 77(2018), 443-466. [3] D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39(2002), 1749-1779. [4] R. Becker, P. Hansbo and M. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg., 192(2003), 723-733. [5] D. Braess, T. Fraunholz and R.H.W. Hoppe, An equilibrated a posteriori error estimator for the interior penalty discontinuous Galerkin method, SIAM J. Numer. Anal., 52(2014), 2121-2136. [6] S.C. Brenner, T. Gudi and L.Y. Sung, A posteriori error control for a weakly over-penalized symmetric interior penalty method, J. Sci. Comput., 40(2009), 37-50. [7] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods (3rd edn), Springer-Verlag, New York, 2008. [8] C. Carstensen, T. Gudi and M. Jensen, A unifying theory of a posteriori error control for discontinuous Galerkin FEM, Numer. Math., 112(2009), 363-379. [9] C. Carstensen and J. Hu, A unifying theory of a posteriori error control for nonconforming finite element methods, Numer. Math., 107(2007), 473-502. [10] G. Chen, M. Feng and X. Xie, A robust WG finite element method for convection-diffusion-reaction equations, J. Comput. Appl. Math., 315(2017), 107-125. [11] G. Chen, M. Feng and X. Xie, Robust globally divergence-free weak Galerkin methods for Stokes equations, J. Comput. Math., 34(2016), 549-570. [12] G. Chen and X. Xie, A robust weak Galerkin finite element method for linear elasticity with strong symmetric stresses, Comput. Methods Appl. Math., 16(2016), 389-408. [13] L. Chen, iFEM:an integrated finite element methods package in MATLAB, University of California at Irvine, 2009. [14] L. Chen, J. Wang and X. Ye, A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 59(2014), 496-511. [15] W. Chen, F. Wang and Y. Wang, Weak Galerkin method for the coupled Darcy-Stokes flow, IMA J. Numer. Anal., 2(2016), 897-921. [16] Y. Chen, G. Chen and X. Xie, Weak Galerkin finite element method for Biot's consolidation problem, J. Comput. Appl. Math., 330(2018), 398-416. [17] Z. Chen and H. Wu, Selected Topics in Finite Element Methods, Science Press, Beijing, 2010. [18] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. [19] P. Clément, Approximation by finite element functions using local regularization, RAIRO Modél. Math. Anal. Numér., 9(1975), 77-84. [20] B. Cockburn and W. Zhang, A posteriori error estimates for HDG methods, J. Sci. Comput., 51(2012), 582-607. [21] B. Cockburn and W. Zhang, A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 51(2013), 676-693. [22] V. Dolejší, I. Šebestová and M. Vohralík, Algebraic and discretization error estimation by equilibrated fluxes for discontinuous Galerkin methods on nonmatching grids, J. Sci. Comput., 64(2015), 1-34. [23] W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33(1996), 1106-1124. [24] Y. Du and Z. Zhang, A numerical analysis of the weak Galerkin method for the Helmholtz equation with high wave number, Commun. Comput. Phys., 22(2017), 133-156. [25] A. Ern and M. Vohralík, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal., 53(2015), 1058-1081. [26] F. Gao and X. Wang, A modified weak Galerkin finite element method for a class of parabolic problems, J. Comput. Appl. Math., 271(2014), 1-19. [27] F. Gao and X. Wang, A modified weak Galerkin finite element method for Sobolev equation, J. Comput. Math., 33(2015), 307-322 [28] T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comput., 79(2010), 2169-2189. [29] Q. Hong, F. Wang, S. Wu and J. Xu, A unified study of continuous and discontinuous Galerkin methods, Sci. China Math., 62(2019), 1-32. [30] P. Houston, D. Schötzau and T. P. Wihler, Energy norm a posteriori error estimation of hpadaptive discontinuous Galerkin methods for elliptic problems, Math. Models Methods Appl. Sci., 17(2007), 33-62. [31] X. Hu, L. Mu and X. Ye, Weak Galerkin method for the Biot's consolidation model, Comput. Math. Appl., 75(2018), 2017-2030. [32] Y. Huang, J. Li and D. Li, Developing weak Galerkin finite element methods for the wave equation, Numer. Methods PDEs., 33(2017), 868-884. [33] O.A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41(2003), 2374-2399. [34] O. A. Karakashian and F. Pascal, Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems, SIAM J. Numer. Anal., 45(2007), 641-665. [35] T. Lewis and M. Neilan, Convergence analysis of a symmetric dual-wind discontinuous Galerkin method, J. Sci. Comput., 59(2014), 602-625. [36] Q. Li and J. Wang, Weak Galerkin finite element methods for parabolic equations, Numer. Methods PDEs., 29(2013), 2004-2024. [37] R. Li, Y. Gao, J. Li and Z. Chen, A weak Galerkin finite element method for a coupled StokesDarcy problem on general meshes, J. Comput. Appl. Math., 334(2018), 111-127. [38] G. Lin, J. Liu, L. Mu and X. Ye, Weak Galerkin finite element methods for Darcy flow:Anisotropy and heterogeneity, J. Comput. Phys., 276(2014), 422-437. [39] R. Lin, X. Ye, S. Zhang and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction Problems, SIAM J. Numer. Anal., 56(2018), 1482-1497. [40] C. Lovadina and L. D. Marini, A posteriori error estimates for discontinuous Galerkin approximations of second order elliptic problems, J. Sci. Comput., 40(2009), 340-359. [41] L. Mu, J. Wang, G. Wei, X. Ye and S. Zhao, Weak Galerkin methods for second order elliptic interface problems, J. Comput. Phys., 250(2013), 106-125. [42] L. Mu, J. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods PDEs., 30(2014), 1003-1029. [43] L. Mu, J. Wang and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. Comput. Phys., 273(2014), 327-342. [44] L. Mu, J. Wang and X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12(2015), 31-53. [45] L. Mu, J. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, J. Comput. Appl. Math., 285(2015), 45-58. [46] L. Mu, J. Wang and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35(2015), 1228-1255. [47] L. Mu, J. Wang and X. Ye, A weak Galerkin method for the Reissner-Mindlin plate in primary form, J. Sci. Comput., 75(2018), 782-802. [48] L. Mu, J. Wang, X. Ye and S. Zhang, A C0-weak Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 59(2014), 473-495. [49] L. Mu, J. Wang, X. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65(2015), 363-386. [50] L. Mu, X. Wang and X. Ye, A modified weak Galerkin finite element method for the Stokes equations, J. Comput. Appl. Math., 275(2015) 79-90. [51] C. Wang, New discretization schemes for time-harmonic Maxwell equations by weak Galerkin finite element methods, J. Comput. Appl. Math., 341(2018), 127-143. [52] C. Wang and J. Wang, An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes, Comput. Math. Appl., 68(2014), 2314-2330. [53] C. Wang and J. Wang, A primal-dual weak Galerkin finite element method for Fokker-Planck type equations, arXiv preprint arXiv:1704.05606, 2017. [54] C. Wang and J. Wang, A primal-dual weak Galerkin finite element method for second order elliptic equations in non-divergence form, Math. Comput., 87(2018), 515-545. [55] C. Wang, J. Wang, R. Wang and R. Zhang, A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307(2016), 346-366. [56] J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241(2013), 103-115. [57] J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput., 83(2014), 2101-2126. [58] J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42(2016), 155-174. [59] J. Wang and X. Ye, The basics of weak Galerkin finite element methods, arXiv preprint arXiv:1901.10035, 2019. [60] J. Wang, Q. Zhai, R. Zhang and S. Zhang, A weak Galerkin finite element scheme for the CahnHilliard equation, Math. Comput., 88(2019), 211-235. [61] J. Wang and Z. Zhang, A hybridizable weak Galerkin method for the Helmholtz equation with large wave number hp analysis, Int. J. Numer. Anal. Model., 14(2017), 744-761. [62] R. Wang, X. Wang and R. Zhang, A modified weak Galerkin finite element method for the poroelasticity problems, Numer. Math. Theory Methods Appl., 11(2018), 518-539. [63] X. Wang, N.S. Malluwawadu, F. Gao and T.C. McMillan, A modified weak Galerkin finite element method, J. Comput. Appl. Math., 271(2014), 319-327. [64] X. Wang, Q. Zhai and R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307(2016), 13-24. [65] R. Schneider, Y. Xu and A. Zhou, An analysis of discontinuous Galerkin methods for elliptic problems, Adv. Comput. Math., 25(2006), 259-286. [66] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comput., 54(1994), 483-493. [67] S. Shields, J. Li and E.A. Machorro, Weak Galerkin methods for time-dependent Maxwell's equations, Comput. Math. Appl., 74(2017), 2106-2124. [68] L. Song, S. Zhao and K. Liu, A relaxed weak Galerkin method for elliptic interface problems with low regularity, Appl. Numer. Math., 128(2018), 65-80. [69] M. Sun and H. Rui, A coupling of weak Galerkin and mixed finite element methods for poroelasticity, Comput. Math. Appl., 73(2017), 804-823. [70] R. Verfürth, A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, New York, 1996. [71] J. Yang and Y. Chen, A unified a posteriori error analysis for discontinuous Galerkin approximations of reactive transport equations, J. Comput. Math., 24(2006), 425-434. [72] Y. Zeng, J. Chen and F. Wang, Convergence analysis of a modified weak Galerkin finite element method for Signorini and obstacle problems, Numer. Methods PDEs., 33(2017), 1459-1474. [73] Q. Zhai, H. Xie, R. Zhang and Z. Zhang, The weak Galerkin method for elliptic eigenvalue problems, Commun. Comput. Phys., 26(2019), 160-191. [74] Q. Zhai, H. Xie, R. Zhang and Z. Zhang, Acceleration of weak Galerkin methods for the Laplacian eigenvalue problem, J. Sci. Comput., 79(2019), 914-934. [75] Q. Zhai and R. Zhang, Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes, Discret. Contin. Dyn. Syst. -B, 24(2019), 403-413. [76] Q. Zhai, R. Zhang and X. Wang, A hybridized weak Galerkin finite element scheme for the Stokes equations, Sci. China Math., 58(2015), 2455-2472. [77] R. Zhang and Q. Zhai, A weak galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 64(2015), 559-585. [78] T. Zhang and T. Lin, A posteriori error estimate for a modified weak Galerkin method solving elliptic problems, Numer. Methods PDEs., 33(2017), 381-398. |
[1] | Ram Manohar, Rajen Kumar Sinha. ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 147-176. |
[2] | Michael Holst, Yuwen Li, Adam Mihalik, Ryan Szypowski. CONVERGENCE AND OPTIMALITY OF ADAPTIVE MIXED METHODS FOR POISSON'S EQUATION IN THE FEEC FRAMEWORK [J]. Journal of Computational Mathematics, 2020, 38(5): 748-767. |
[3] | Tianliang Hou, Yanping Chen. MIXED DISCONTINUOUS GALERKIN TIME-STEPPING METHOD FOR LINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2015, 33(2): 158-178. |
[4] | Yuping Zeng, Jinru Chen, Feng Wang, Yanxia Meng. A PRIORI AND A POSTERIORI ERROR ESTIMATES OF A WEAKLY OVER-PENALIZED INTERIOR PENALTY METHOD FOR NON-SELF-ADJOINT AND INDEFINITE PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(3): 332-347. |
[5] | Yanzhen Chang, Danping Yang. A POSTERIORI ERROR ESTIMATE OF FINITE ELEMENT METHOD FOR THE OPTIMAL CONTROL WITH THE STATIONARY BÉNARD PROBLEM [J]. Journal of Computational Mathematics, 2013, 31(1): 68-87. |
[6] | Karl Kunisch, Wenbin Liu, Yanzhen Chang, Ningning Yan, Ruo Li. ADAPTIVE FINITE ELEMENT APPROXIMATION FOR A CLASS OF PARAMETER ESTIMATION PROBLEMS [J]. Journal of Computational Mathematics, 2010, 28(5): 645-675. |
[7] |
Tang Liu, Ningning Yan and Shuhua Zhang.
RICHARDSON EXTRAPOLATION AND DEFECT CORRECTION OF FINITE ELEMENT METHODS FOR OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2010, 28(1): 55-71. |
[8] | R.H.W. Hoppe, J. Sch\. CONVERGENCE OF ADAPTIVE EDGE ELEMENT METHODS FOR THE 3D EDDY CURRENTS EQUATIONS [J]. Journal of Computational Mathematics, 2009, 27(5): 657-676. |
[9] | Lei Yuan, Danping Yang. A POSTERIORI ERROR ESTIMATE OF OPTIMAL CONTROL PROBLEM OF PDE WITH INTEGRAL CONSTRAINT FOR STATE [J]. Journal of Computational Mathematics, 2009, 27(4): 525-542. |
[10] | Michael Hinze, Ningning Yan, Zhaojie Zhou. Variational Discretization for Optimal Control Governed by Convection Dominated Diffusion Equations [J]. Journal of Computational Mathematics, 2009, 27(2-3): 237-253. |
[11] | Xiaobing Feng Haijun Wu. A Posteriori Error Estimates for Finite Element Approximations of the Cahn-Hilliard Equation and the Hele-Shaw Flow [J]. Journal of Computational Mathematics, 2008, 26(6): 767-796. |
[12] | Ji-ming Yang,Yan-ping Chen. A UNIFIED A POSTERIORI ERROR ANALYSIS FOR DISCONTINUOUS GALERKINAPPROXIMATIONS OF REACTIVE TRANSPORT EQUATIONS [J]. Journal of Computational Mathematics, 2006, 24(3): 425-434. |
[13] | Hui-po Liu,Ning-ning Yan. SUPERCONVERGENCE AND A POSTERIORI ERROR ESTIMATES FOR BOUNDARYCONTROL GOVERNED BY STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2006, 24(3): 343-356. |
[14] | Zhi Min ZHANG. POLYNOMIAL PRESERVING RECOVERY FOR ANISOTROPIC AND IRREGULAR GRIDS [J]. Journal of Computational Mathematics, 2004, 22(2): 331-340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||