Previous Articles Next Articles
Yifen Ke, Changfeng Ma
Yifen Ke, Changfeng Ma. MODIFIED ALTERNATING POSITIVE SEMIDEFINITE SPLITTING PRECONDITIONER FOR TIME-HARMONIC EDDY CURRENT MODELS[J]. Journal of Computational Mathematics, 2021, 39(5): 733-754.
[1] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci., 21(1998), 823-864. [2] M. Arioli and G. Manzini. A null space algorithm for mixed finite-element approximations of Darcy's equation. Commun. Numer. Meth. Engng., 18(2002), 645-657. [3] K. Arrow, L. Hurwicz, and H. Uzawa. Studies in Linear and Nonlinear Programming. Stanford University Press, Stanford, 1958. [4] Z.Z. Bai. Optimal parameters in the HSS-like methods for saddle-point problems. Numer. Linear Algebra Appl., 16(2009), 447-479. [5] Z.Z. Bai. Block alternating splitting implicit iteration methods for saddle-point problems from time-harmonic eddy current models. Numer. Linear Algebra Appl., 19(2012), 914-936. [6] Z.Z. Bai and G.H. Golub. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal., 27(2007), 1-23. [7] Z.Z. Bai, G.H. Golub, and M.K. Ng. Hermitian and skew-Hermitian splitting methods for nonHermitian positive definite linear systems. SIAM J. Matrix Anal. Appl., 24(2003), 603-626. [8] Z.Z. Bai, G.H. Golub, and J.Y. Pan. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math., 98(2004), 1-32. [9] Z.Z. Bai and M.K. Ng. On inexact preconditioners for nonsymmetric matrices. SIAM J. Sci. Comput., 26(2005), 1710-1724. [10] Z.Z. Bai and Z.Q. Wang. On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl., 428(2008), 2900-2932. [11] M. Benzi. Solution of equality-constrained quadratic programming problems by a projection iterative method. Rend. Mat. Appl., 13(1993), 275-296. [12] M. Benzi, G.H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numer., 14(2005), 1-137. [13] J.H. Bramble, J.E. Pasciak, and A.T. Vassilev. Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal., 34(1997), 1072-1092. [14] J.H. Bramble, J.E. Pasciak, and A.T. Vassilev. Uzawa type algorithms for nonsymmetric saddle point problems. Math. Comp., 69(2000), 667-689. [15] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15, Springer-Verlag, New York, 1991. [16] A. Bossavit. On the condition ‘h normal to the wall’ in magnetic field problems. Internat. J. Numer. Methods Engrg., 24(1987), 1541-1550. [17] Z.H. Cao. Fast Uzawa algorithms for solving non-symmetric stabilized saddle point problems. Numer. Linear Algebra Appl., 11(2004), 1-24. [18] Y. Cao, S. Li, and L.Q. Yao. A class of generalized shift-splitting preconditioners for nonsymmetric saddle point problems. Appl. Math. Lett., 49(2015), 20-27. [19] Y. Cao, L.Q. Yao, M.Q. Jiang, and Q. Niu. A relaxed HSS preconditioner for saddle point problems from meshfree discretization. J. Comput. Math., 31(2013), 398-421. [20] Y. Cao and S.C. Yi. A class of Uzawa-PSS iteration methods for nonsingular and singular nonHermitian saddle point problems. Appl. Math. Comput., 275(2016), 41-49. [21] F. Chen and Y.L. Jiang. A generalization of the inexact parameterized Uzawa methods for saddle point problems. Appl. Math. Comput., 206(2008), 765-771. [22] C.R. Chen and C.F. Ma. A generalized shift-splitting preconditioner for singular saddle point problems. Appl. Math. Comput., 269(2015), 947-955. [23] X.L. Cheng. The inexact Uzawa algorithm for saddle point problem. Appl. Math. Lett., 13(2000), 1-3. [24] X.L. Cheng. On the nonlinear inexact Uzawa algorithm for saddle-point problems. SIAM J. Numer. Anal., 37(2000), 1930-1934. [25] X.L. Cheng and J. Zou. An inexact Uzawa-type iterative method for solving saddle point problems. Int. J. Comput. Math., 80(2003), 55-64. [26] M.R. Cui. A sufficient condition for the convergence of the inexact Uzawa algorithm for saddle point problems. J. Comput. Appl. Math., 139(2002), 189-196. [27] M.R. Cui. Analysis of iterative algorithms of Uzawa type for saddle point problems. Appl. Numer. Math., 50(2004), 133-146. [28] H.C. Elman and G.H. Golub. Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal., 31(1994), 1645-1661. [29] N. Gould, D. Orban, and T. Rees. Projected Krylov methods for saddle-point systems. SIAM J. Matrix Anal. Appl., 35(2014), 1329-1343. [30] Q.Y. Hu and J. Zou. Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems. Numer. Math., 93(2002), 333-359. [31] N. Huang, C.F. Chang, and Y.J. Xie. An inexact relaxed DPSS preconditioner for saddle point problem. Appl. Math. Comput., 265(2015), 431-447. [32] Y.F. Ke and C.F. Ma. Spectrum analysis of a more general augmentation block preconditioner for generalized saddle point matrices. BIT, 56(2016), 489-500. [33] Y.F. Ke and C.F. Ma. An inexact modified relaxed splitting preconditioner for the generalized saddle point problems from the incompressible Navier-Stokes equations. Numer. Algor., 75(2017), 1103-1121. [34] Y.F. Ke and C.F. Ma. The dimensional splitting iteration methods for solving saddle point problems arising from time-harmonic eddy current models. Appl. Math. Comput., 303(2017), 146-164. [35] Y.F. Ke and C.F Ma. A low-order block preconditioner for saddle point linear systems. Comput. Appl. Math., 37(2018), 1959-1970. [36] Y.F. Ke amd C.F. Ma, A new relaxed splitting preconditioner for the generalized saddle point problems from the incompressible Navier-Stokes equations. Comput. Appl. Math., 37(2018), 515-524. [37] I.N. Konshin, M.A. Olshanskii, and Y.V. Vassilevski. ILU preconditioners for nonsymmetric saddle-point matrices with application to the incompressible Navier-Stokes equations. SIAM J. Sci. Comput., 37(2015), A2171-A2197. [38] P.R. Kotiuga. Topological considerations in coupling magnetic scalar potentials to stream functions describing surface currents. IEEE T. Magn., 25(1989), 2925-2927. [39] C.X. Li, S.L. Wu, and A.Q. Huang. A relaxed splitting preconditioner for saddle point problems. J. Numer. Math., 23(2015), 361-368. [40] Q.B. Liu, G.L. Chen, and C.Q. Song. Preconditioned HSS-like iterative method for saddle point problems. J. Comput. Math., 32(2014), 442-455. [41] Z.R. Ren and Y. Cao. An alternating positive-semidefinite splitting preconditioner for saddle point problems from time-harmonic eddy current models. IMA J. Numer. Anal., 36(2016), 922-946. [42] A.A. Rodríguez and R. Hernández. Iterative methods for the saddle-point problem arising from the HC/EI formulation of the eddy current problem. SIAM J. Sci. Comput., 31(2009), 3155-3178. [43] A.A. Rodríguez, R. Hiptmair, and A. Valli. A hybrid formulation of eddy current problems. Numer. Meth. Part. D. E., 21(2005), 742-763. [44] A.A. Rodríguez and A. Valli. Eddy Current Approximation of Maxwell Equations:Theory, Algorithms and Applications. Springer, Milan, 2010. [45] H.A. Van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, Cambridge, 2003. [46] Z.Q. Wang. Optimization of the parameterized Uzawa preconditioners for saddle point matrices. J. Comput. Appl. Math., 226(2009), 136-154. [47] A.L. Yang and Y.J. Wu. The Uzawa-HSS method for saddle-point problems. Appl. Math. Lett., 38(2014), 38-42. [48] J.L. Zhang, C.Q. Gu, and K. Zhang. A relaxed positive-definite and skew-Hermitian splitting preconditioner for saddle point problems. Appl. Math. Comput., 249(2014), 468-479. [49] G.F. Zhang, Z.R. Ren, and Y.Y. Zhou. On HSS-based constraint preconditioners for generalized saddle-point problems. Numer. Algor., 57(2011), 273-287. [50] M.Z. Zhu, G.F. Zhang, Z. Zheng, and Z.Z. Liang. On HSS-based sequential two-stage method for non-Hermitian saddle point problems. Appl. Math. Comput., 242(2014), 907-916. |
[1] | Mei Yang, Ren-Cang Li. HEAVY BALL FLEXIBLE GMRES METHOD FOR NONSYMMETRIC LINEAR SYSTEMS [J]. Journal of Computational Mathematics, 2022, 40(5): 711-727. |
[2] | Lu Zhang, Qifeng Zhang, Hai-wei Sun. A FAST COMPACT DIFFERENCE METHOD FOR TWO-DIMENSIONAL NONLINEAR SPACE-FRACTIONAL COMPLEX GINZBURG-LANDAU EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(5): 708-732. |
[3] | Daniele Boffi, Zhongjie Lu, Luca F. Pavarino. ITERATIVE ILU PRECONDITIONERS FOR LINEAR SYSTEMS AND EIGENPROBLEMS [J]. Journal of Computational Mathematics, 2021, 39(4): 633-654. |
[4] | Kaibo Hu, Ragnar Winther. WELL-CONDITIONED FRAMES FOR HIGH ORDER FINITE ELEMENT METHODS [J]. Journal of Computational Mathematics, 2021, 39(3): 333-357. |
[5] | Maohua Ran, Chengjian Zhang. A HIGH-ORDER ACCURACY METHOD FOR SOLVING THE FRACTIONAL DIFFUSION EQUATIONS [J]. Journal of Computational Mathematics, 2020, 38(2): 239-253. |
[6] | Davod Hezari, Vahid Edalatpour, Hadi Feyzollahzadeh, Davod Khojasteh Salkuyeh. ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER [J]. Journal of Computational Mathematics, 2019, 37(1): 18-32. |
[7] | Yang Cao, Zhiru Ren, Linquan Yao. IMPROVED RELAXED POSITIVE-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONERS FOR SADDLE POINT PROBLEMS [J]. Journal of Computational Mathematics, 2019, 37(1): 95-111. |
[8] | Xinhui Shao, Chen Li, Tie Zhang, Changjun Li. A MODIFIED PRECONDITIONER FOR PARAMETERIZED INEXACT UZAWA METHOD FOR INDEFINITE SADDLE POINT PROBLEMS [J]. Journal of Computational Mathematics, 2018, 36(4): 579-590. |
[9] | Davide Forti, Alfio Quarteroni, Simone Deparis. A PARALLEL ALGORITHM FOR THE SOLUTION OF LARGE-SCALE NONCONFORMING FLUID-STRUCTURE INTERACTION PROBLEMS IN HEMODYNAMICS [J]. Journal of Computational Mathematics, 2017, 35(3): 363-380. |
[10] | Xin He, Maya Neytcheva, Cornelis Vuik. ON PRECONDITIONING OF INCOMPRESSIBLE NON-NEWTONIAN FLOW PROBLEMS [J]. Journal of Computational Mathematics, 2015, 33(1): 33-58. |
[11] | Qingbing Liu, Guoliang Chen, Caiqin Song. PRECONDITIONED HSS-LIKE ITERATIVE METHOD FOR SADDLE POINT PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(4): 442-455. |
[12] | Xiaoying Zhang, Yumei Huang. ON BLOCK PRECONDITIONERS FOR PDE-CONSTRAINED OPTIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(3): 272-283. |
[13] | Minli Zeng, Guofeng Zhang. A NEW PRECONDITIONING STRATEGY FOR SOLVING A CLASS OF TIME-DEPENDENT PDE-CONSTRAINED OPTIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(3): 215-232. |
[14] | Hongtao Fan, Bing Zheng. THE GENERALIZED LOCAL HERMITIAN AND SKEW-HERMITIAN SPLITTING ITERATION METHODS FOR THE NON-HERMITIAN GENERALIZED SADDLE POINT PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(3): 312-331. |
[15] | Qiang Niu, Michael Ng. NUMERICAL STUDIES OF A CLASS OF COMPOSITE PRECONDITIONERS [J]. Journal of Computational Mathematics, 2014, 32(2): 136-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||