Benjamin Stamm, Shuyang Xiang
[1] A. Bower, Lecture notes: EN224: Linear Elasticity, Division of Engineering, Brown University, 2005. [2] R.G. Barrera, G.A. Estévez, and J. Giraldo, Vector spherical harmonics and their application to magnetostatics, Eur. J. Phys., 6(1985), 287-294. [3] H.D. Bui, An integral eqautions method for solving the problem of a plane crack of arbitary shape, J. Mech. Phys. Solids, 25(1997), 29-39. [4] E. Cancès, V. Ehrlacher, F. Legoll, B. Stamm, and S. Xiang. An embedded corrector problem for homogenization. Part I: Theory. SIAM MMS, 18:3(2020), 1179-1209. [5] E. Cancès, V. Ehrlacher, F. Legoll, B. Stamm, and S.Y. Xiang. An embedded corrector problem for homogenization. Part II: Algorithms and discretization. J. Comput. Phys., 407(2020), 109254. [6] B. Carrascal, P. Estevez, Lee, and V. Lorenzo, Vector spherical harmonics and their application to classical electrodynamics, Eur. J. Phys., 12(1991), 184-191. [7] D.J. Haxton, Lebedev discrete variable representation, J. Phys. B: Atomic, Molecular and Optical Physics, 40:23(2007), 4443-4451. [8] E. Corona and S. Veerapaneni, Boundary integral equation analysis for suspension of spheres in Stokes flow. J. Comput. Phys., 362(2018), 327-345. [9] E.L. Hill. The theory of vector spherical harmonics. Am. J. Phys, 22(1954), 211-214. [10] E.J. Weinberg, Monopole vector spherical harmonics, Phys. Rev. D, 49(1994), 1086-1092. [11] V.V. Jikov, S.M. Kozlov, and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, 1994. [12] K.K. Phani and D. Sanyal, The relations between the shear modulus, the bulk modulus and Young’s modulus for porous isotropic ceramic material, Mater. Sci. Eng. A., 490:1(2008), 305-312. [13] V.D. Kupradze, Progress in Solid Mechanics/Dynamical Problems in Elasticity., volume 3. Amsterdam: North-Holland Publishing, 1963. [14] Eric B. Lindgren, Anthony J. Stace, Etienne Polack, Yvon Maday, Benjamin Stamm, and Elena Besley, An integral equation approach to calculate electrostatic interactions in many-body dielectric systems. J. Comput. Phys., 371(2018), 712-731. [15] Y.M. Leroy, Introduction to the finite-element method for elastic and elasto-plastic solids, In Mechanics of Crustal Rocks, Springer, Vienna, (2011), 157-239. [16] T.M. MacRobert, Spherical Harmonics: An Elementary Treatise on Harmonic Functions, with Applications, Pergamon Press, 1967. [17] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge university press, 2000. [18] P.H. Mott and C.M. Roland, Limits to Poisson’s ratio in isotropic materials. Phys. Rev. B, 80:132104(2009). [19] R.S. Falk, Lecture notes: Finite element method for linear elasticity, Department of Mathematics-Hill Center Rutgers, The State University of New Jersey, 2008. [20] S. A. Sauter and C. Schwab, Boundary element methods, In Boundary Element Methods, Springer, 2010, pp. 183-287. [21] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements, Springer Science & Business Media, 2007. [22] V.I. Kushch, Effective Properties of Heterogeneous Materials, Springer, February 2013, chapter 2, 97-197. [23] E.W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Pub. Co., 1955. |
[1] | Ruming Zhang, Bo Zhang. A NEW INTEGRAL EQUATION FORMULATION FOR SCATTERING BY PENETRABLE DIFFRACTION GRATINGS [J]. Journal of Computational Mathematics, 2018, 36(1): 110-127. |
[2] | Darko Volkov. A NUMERICAL BOUNDARY EIGENVALUE PROBLEM FOR ELASTIC CRACKS IN FREE AND HALF SPACE [J]. Journal of Computational Mathematics, 2011, 29(5): 543-573. |
[3] | Xiaolin Li, Jialin Zhu. GALERKIN BOUNDARY NODE METHOD FOR EXTERIOR NEUMANN PROBLEMS [J]. Journal of Computational Mathematics, 2011, 29(3): 243-260. |
[4] | Jingtang Ma , Tao Tang . ERROR ANALYSIS FOR A FAST NUMERICAL METHOD TO ABOUNDARY INTEGRAL EQUATION OF THE FIRST KIND [J]. Journal of Computational Mathematics, 2008, 26(1): 56-68. |
[5] | Jin Huang,Tao Lu. SPLITTING EXTRAPOLATIONS FOR SOLVING BOUNDARY INTEGRAL EQUATIONS OF LINEAR ELASTICITY DIRICHLET PROBLEMS ON POLYGONS BY MECHANICAL QUADRATURE METHODS [J]. Journal of Computational Mathematics, 2006, 24(1): 9-018. |
[6] | Jin HUANG, Tao LV. THE MECHANICAL QUADRATURE METHODS AND THEIR EXTRAPOLATION FOR SOLVING BIE OF STEKLOV EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2004, 22(5): 719-726. |
[7] | Pin Wen ZHANG, Yu ZHANG. Wavelet method for boundary intergal equations [J]. Journal of Computational Mathematics, 2000, 18(1): 25-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||