Previous Articles Next Articles
Chenglong Bao^{1}, Jianfeng Cai^{2}, Jae Kyu Choi^{3}, Bin Dong^{4}, Ke Wei^{5}
[1] L.de Rochefort, T. Liu, B. Kressler, J. Liu, P. Spincemaille, V. Lebon, J. Wu and Y. Wang, Quantitative susceptibility map reconstruction from MR phase data using Bayesian regularization: validation and application to brain imaging, Magn. Reson. Med., 63:1(2010), 194206. [2] J.K. Seo, E.J. Woo, U. Katscher and Y. Wang, ElectroMagnetic Tissue Properties MRI, Imperial College Press, London, 1st edition, 2014. [3] Y. Kee, Z. Liu, L. Zhou, A. Dimov, J. Cho, L.de Rochefort, J.K. Seo and Y. Wang, Quantitative susceptibility mapping (QSM) algorithms: mathematical rationale and computational implementations, IEEE Trans. Biomed. Eng., 64:11(2017), 25312545. [4] W. Chen, S.A. Gauthier, A. Gupta, J. Comunale, T. Liu, S. Wang, M. Pei, D. Pitt and Y. Wang, Quantitative susceptibility mapping of multiple sclerosis lesions at various ages, Radiology, 271:1(2014), 183192, PMID: 24475808. [5] J. AcostaCabronero, G.B. Williams, A. CardenasBlanco, R.J. Arnold, V. Lupson and P.J. Nestor, In vivo quantitative susceptibility mapping (QSM) in Alzheimer’s disease, PloS one, 8:11(2013), e81093. [6] J.M.G.van Bergen, J. Hua, P.G. Unschuld, I.A.L. Lim, C.K. Jones, R.L. Margolis, C.A. Ross, P.C.M.van Zijl and X. Li, Quantitative susceptibility mapping suggests altered brain iron in premanifest Huntington disease, Amer. J. Neuroradiol, 37:5(2016), 789796. [7] E.M. Haacke, J. Tang, J. Neelavalli and Y.C.N. Cheng, Susceptibility mapping as a means to visualize veins and quantify oxygen saturation, J. Magn. Reson. Imag., 32:3(2010), 663676. [8] J. Klohs, A. Deistung, F. Schweser, J. Grandjean, M. Dominietto, C. Waschkies, R.M. Nitsch, I. Knuesel, J.R. Reichenbach and M. Rudin, Detection of cerebral microbleeds with quantitative susceptibility mapping in the arcabeta mouse model of cerebral amyloidosis, J. Cerebr. Blood F. Met., 31:12(2011), 22822292, PMID: 21847134. [9] A.V. Dimov, Z. Liu, P. Spincemaille, M.R. Prince, J. Du and Y. Wang, Bone quantitative susceptibility mapping using a chemical species? Specific r2^{*} signal model with ultrashort and conventional echo data, Magn. Reson. Med., 79:1(2018), 121128. [10] T. Liu, P. Spincemaille, L.de Rochefort, R. Wong, M. Prince and Y. Wang, Unambiguous identification of superparamagnetic iron oxide particles through quantitative susceptibility mapping of the nonlinear response to magnetic fields, Magn. Reson. Imaging, 28:9(2010), 13831389. [11] C. Milovic, B. Bilgic, B. Zhao, C. Langkammer, C. Tejos and J. AcostaCabronero, Weakharmonic regularization for quantitative susceptibility mapping, Magn. Reson. Med., 81:2(2019), 13991411. [12] Y. Wang and T. Liu, Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker, Magn. Reson. Med., 73:1(2015), 82101. [13] T. Liu, I. Khalidov, L.de Rochefort, P. Spincemaille, J. Liu, A.J. Tsiouris and Y. Wang, A novel background field removal method for MRI using projection onto dipole fields (PDF), NMR Biomed, 24:9(2011), 11291136. [14] T. Liu, J. Liu, L.de Rochefort, P. Spincemaille, I. Khalidov, J.R. Ledoux and Y. Wang, Morphology enabled dipole inversion (MEDI) from a singleangle acquisition: comparison with COSMOS in human brain imaging, Magn. Reson. Med., 66:3(2011), 777783. [15] T. Liu, P. Spincemaille, L.de Rochefort, B. Kressler and Y. Wang, Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI, Magn. Reson. Med., 61:1(2009), 196204. [16] E.M. Stein and R. Shakarchi, Functional Analysis. Introduction to Further Topics in Analysis, volume 4 of Princeton Lect. Anal., Princeton University Press, Princeton, NJ, 2011. [17] E.M. Haacke, S. Liu, S. Buch, W. Zheng, D. Wu and Y. Ye, Quantitative susceptibility mapping: current status and future directions, Magn. Reson. Imaging, 33:1(2015), 125. [18] J.K. Choi, H.S. Park, S. Wang, Y. Wang and J.K. Seo, Inverse problem in quantitative susceptibility mapping, SIAM J. Imaging Sci., 7:3(2014), 16691689. [19] T. Liu, C. Wisnieff, M. Lou, W. Chen, P. Spincemaille and Y. Wang, Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping, Magn. Reson. Med., 69:2(2013), 467476. [20] S. Wang, T. Liu, W. Chen, P. Spincemaille, C. Wisnieff, A.J. Tsiouris, W. Zhu, C. Pan, L. Zhao and Y. Wang, Noise effects in various quantitative susceptibility mapping methods, IEEE Trans. Biomed. Eng., 60:12(2013), 34413448. [21] C. Bao, J. Choi and B. Dong, Whole brain susceptibility mapping using harmonic incompatibility removal, SIAM J. Imaging Sci., 12:1(2019), 492520. [22] F. Trèves, Basic Linear Partial Differential Equations, Dover Publications, Inc., Mineola, NY, 2006, Reprint of the 1975 original. [23] H. Sun and A.H. Wilman, Background field removal using spherical mean value filtering and tikhonov regularization, Magn. Reson. Med., 71:3(2014), 11511157. [24] L.C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second edition, 2010. [25] H. Ji and K. Wang, Robust image deblurring with an inaccurate blur kernel, IEEE Trans. Image Process., 21:4(2012), 16241634. [26] J. Li, C. Miao, Z. Shen, G. Wang and H. Yu, Robust frame based xray CT reconstruction, J. Comput. Math., 34:6(2016), 683704. [27] J.F. Cai, R.H. Chan, L. Shen and Z. Shen, Convergence analysis of tight framelet approach for missing data recovery, Adv. Comput. Math., 31:13(2009), 87113. [28] J.F. Cai, R.H. Chan and Z. Shen, Simultaneous cartoon and texture inpainting, Inverse Probl. Imaging, 4:3(2010), 379395. [29] R.H. Chan, T.F. Chan, L. Shen and Z. Shen, Wavelet algorithms for highresolution image reconstruction, SIAM J. Sci. Comput., 24:4(2003), 14081432. [30] J.F. Cai, T. Wang and K. Wei, Fast and provable algorithms for spectrally sparse signal reconstruction via lowrank Hankel matrix completion, Appl. Comput. Harmon. Anal., 46:1(2019), 94121. [31] G. Ongie and M. Jacob, Offthegrid recovery of piecewise constant images from few Fourier samples, SIAM J. Imaging Sci., 9:3(2016), 10041041. [32] C. Milovic, B. Bilgic, B. Zhao, J. AcostaCabronero and C. Tejos, Fast nonlinear susceptibility inversion with variational regularization, Magn. Reson. Med., 80:2(2018), 814821. [33] J.F. Cai, B. Dong, S. Osher and Z. Shen, Image restoration: total variation, wavelet frames, and beyond, J. Amer. Math. Soc., 25:4(2012), 10331089. [34] J.F. Cai, B. Dong and Z. Shen, Image restoration: a wavelet frame based model for piecewise smooth functions and beyond, Appl. Comput. Harmon. Anal., 41:1(2016), 94138. [35] L.I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60:14(1992), 259268, Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991). [36] K. Bredies, K. Kunisch and T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3:3(2010), 492526. [37] Y. Kee, J. Cho, K. Deh, Z. Liu, P. Spincemaille and Y. Wang, Coherence enhancement in quantitative susceptibility mapping by means of anisotropic weighting in morphology enabled dipole inversion, Magn. Reson. Med., 79:2(2018), 11721180. [38] Z. Liu, P. Spincemaille, Y. Yao, Y. Zhang and Y. Wang, MEDI+0: morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping, Magn. Reson. Med., 79:5(2017), 27952803. [39] J. Eckstein and D.P. Bertsekas, On the DouglasRachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Programming, 55:3, Ser. A (1992), 293318. [40] J.F. Cai, S. Osher and Z. Shen, Split Bregman methods and frame based image restoration, Multiscale Model. Simul., 8:2(2009/10), 337369. [41] T. Goldstein and S.J. Osher, The split Bregman method for L1regularized problems, SIAM J. Imaging Sci., 2:2(2009), 323343. [42] Y.R. Fan, T.Z. Huang, T.H. Ma and X.L. Zhao, Cartoontexture image decomposition via nonconvex lowrank texture regularization, J. Franklin Inst., 354:7(2017), 31703187. [43] B. He, M. Tao and X. Yuan, Alternating direction method with Gaussian back substitution for separable convex programming, SIAM J. Optim., 22:2(2012), 313340. [44] C. Wisnieff, T. Liu, P. Spincemaille, S. Wang, D. Zhou and Y. Wang, Magnetic susceptibility anisotropy: cylindrical symmetry from macroscopically ordered anisotropic molecules and accuracy of MRI measurements using few orientations, NeuroImage, 70(2013), 363376. [45] C. Langkammer, F. Schweser, K. Shmueli, C. Kames, X. Li, L. Guo, C. Milovic, J. Kim, H. Wei, K. Bredies, S. Buch, Y. Guo, Z. Liu, J. Meineke, A. Rauscher, J.P. Marques and B. Bilgic, Quantitative susceptibility mapping: Report from the 2016 reconstruction challenge, Magn. Reson. Med., 79:3(2018), 16611673. [46] K. Shmueli, J.A.de Zwart, P.van Gelderen, T. Li, S.J. Dodd and J.H. Duyn, Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data, Magn. Reson. Med., 62:6(2009), 15101522. [47] B. Kressler, L.de Rochefort, T. Liu, P. Spincemaille, J. Quan and Y. Wang, Nonlinear regularization for per voxel estimation of magnetic susceptibility distributions from MRI field maps, IEEE Trans. Med. Imag., 29:2(2010), 273281. [48] W. Li, A.V. Avram, B. Wu, X. Xiao and C. Liu, Integrated Laplacianbased phase unwrapping and background phase removal for quantitative susceptibility mapping, NMR in Biomedicine, 27:2(2014), 219227, NBM130182.R2. [49] Z. Wang, A.C. Bovik, H.R. Sheikh and E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13:4(2004), 600612. [50] L.de Rochefort, R. Brown, M.R. Prince and Y. Wang, Quantitative MR susceptibility mapping using piecewise constant regularized inversion of the magnetic field, Magn. Reson. Med., 60:4(2008), 10031009. [51] D.C. Ghiglia and M.D. Pritt, TwoDimensional Phase Unwrapping: Theory, Algorithms, and Software, WileyInterscience publication, Wiley, 1998. [52] D. Zhou, T. Liu, P. Spincemaille and Y. Wang, Background field removal by solving the Laplacian boundary value problem, NMR in Biomedicine, 27:3(2014), 312319, NBM130115.R3. 
[1]  Yang Chen, Chunlin Wu. DATADRIVEN TIGHT FRAME CONSTRUCTION FOR IMPULSIVE NOISE REMOVAL [J]. Journal of Computational Mathematics, 2022, 40(1): 89107. 
[2]  Xiaobing Feng, Yukun Li, Yi Zhang. STRONG CONVERGENCE OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR A CLASS OF SEMILINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH MULTIPLICATIVE NOISE [J]. Journal of Computational Mathematics, 2021, 39(4): 574598. 
[3]  Jafar Biazar, Khadijeh Sadri. TWOVARIABLE JACOBI POLYNOMIALS FOR SOLVING SOME FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2020, 38(6): 879902. 
[4]  Christoph Reisinger, Zhenru Wang. ANALYSIS OF MULTIINDEX MONTE CARLO ESTIMATORS FOR A ZAKAI SPDE [J]. Journal of Computational Mathematics, 2018, 36(2): 202236. 
[5]  Rikard Anton, David Cohen. EXPONENTIAL INTEGRATORS FOR STOCHASTIC SCHRÖDINGER EQUATIONS DRIVEN BY ITÔ NOISE [J]. Journal of Computational Mathematics, 2018, 36(2): 276309. 
[6]  CharlesEdouard Bréhier, Martin Hairer, Andrew M. Stuart. WEAK ERROR ESTIMATES FOR TRAJECTORIES OF SPDEs UNDER SPECTRAL GALERKIN DISCRETIZATION [J]. Journal of Computational Mathematics, 2018, 36(2): 159182. 
[7]  Weihua Deng, Minghua Chen. EFFICIENT NUMERICAL ALGORITHMS FOR THREEDIMENSIONAL FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2014, 32(4): 371391. 
[8]  Wei Wang, Michael K. Ng. ON ALGORITHMS FOR AUTOMATIC DEBLURRING FROM A SINGLE IMAGE [J]. Journal of Computational Mathematics, 2012, 30(1): 80100. 
[9]  M. Gunzburger, A. Labovsky. EFFECTS OF APPROXIMATE DECONVOLUTION MODELS ON THE SOLUTION OF THE STOCHASTIC NAVIERSTOKES EQUATIONS [J]. Journal of Computational Mathematics, 2011, 29(2): 131140. 
[10]  Kaj Nyströ, m, Thomas Ö, nskog. WEAK APPROXIMATION OF OBLIQUELY REFLECTED DIFFUSIONS IN TIMEDEPENDENT DOMAINS [J]. Journal of Computational Mathematics, 2010, 28(5): 579605. 
[11] 
JianFeng Cai, Zuowei Shen.
FRAMELET BASED DECONVOLUTION [J]. Journal of Computational Mathematics, 2010, 28(3): 289308. 
[12] 
Chong Chen and Guoliang Xu .
CONSTRUCTION OF GEOMETRIC PARTIAL DIFFERENTIAL EQUATIONS FOR LEVEL SETS [J]. Journal of Computational Mathematics, 2010, 28(1): 105121. 
[13] 
Luca Ded\`e.
REDUCED BASIS METHOD FOR PARAMETRIZED ELLIPTIC ADVECTIONREACTION PROBLEMS [J]. Journal of Computational Mathematics, 2010, 28(1): 122148. 
[14]  Wei Gong, Ningning Yan. A Posteriori Error Estimate for Boundary Control Problems Governed by the Parabolic Partial Differential Equations [J]. Journal of Computational Mathematics, 2009, 27(1): 6888. 
[15]  Yanzhao Cao, Ran Zhang , Kai Zhang . Finite Element and Discontinuous Galerkin Method for Stochastic Helmholtz Equation in Two and ThreeDimensions [J]. Journal of Computational Mathematics, 2008, 26(5): 702715. 
Viewed  
Full text 


Abstract 

