Previous Articles Next Articles
Baiying Dong1,2, Xiufeng Feng1, Zhilin Li3
[1] L.C. Evans, Partial Differential Equations, 1st ed., American Mathematical Society, Berkeley, 1998. [2] N. An and H. Chen, A partially penalty immersed interface finite element method for anisotropic elliptic interface problems. Numerical Methods for Partial Differential Equations, 30(2014), 1984-2028. [3] S. Hou, P. Song, L. Wang, and H.K. Zhao, A weak formulation for solving elliptic interface problems without body fitted grid. Journal of Computational Physics, 249(2013), 80-95. [4] S. Hou, W. Wang and L. Wang, Numerical method for solving matrix coefficient elliptic equation with sharp-edged interfaces. Journal of Computational Physics, 229(2010), 7162-7179. [5] L. Wang, S. Hou and L. Shi, A numerical method for solving three-dimensional elliptic interface problems with triple junction points. Advances in Computational Mathematics, 44(2018), 175-193. [6] C. Lu, Z. Yang, J. Bai, Y. Cao and X. He, Three-dimensional immersed finite-element method for anisotropic magnetostatic/electrostatic interface problems with nonhomogeneous flux jump. International Journal for Numerical Methods in Engineering, 121(2020), 2107-2127. [7] M. Dumett and J. Keener, An immersed interface method for solving anisotropic elliptic boundary value problems in three dimensions. SIAM Journal on Scientific Computing. 25(2003), 348-367. [8] B. Dong, X. Feng and Z. Li, A FE-FD method for anisotropic elliptic interface problems. SIAM Journal on Scientific Computing. 42(2020), B1041-B1066. [9] Y. Gong, B. Li and Z. Li, Immersed-interfacefinite-element methods for elliptic interface problems with non-homogeneous jump conditions. SIAM Journal on Numerical Analysis, 46(2008), 472-495. [10] D. Braess, Finite elements: Theory, fast solvers, and applications in solid mechanics, 3rd ed., Cambridge University Press, Cambridge, 2007. [11] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, 3rd ed., Springer, New York, 2002. [12] J.H. Bramble and V. Thomée, Interior maximum norm estimates for some simple finite element methods. ESAIM: Mathematical Modelling and Numerical Analysis, 8(1974), 5-18. [13] E. Dari, R.G. Duran and C. Padra, Maximum norm error estimators for three-dimensional elliptic problems. SIAM Journal on Numerical Analysis, 37(2000), 683-700. [14] R. Scott, Optimal L∞ estimates for the finite element method on irregular meshes. Mathematics of Computation, 30:136(1976), 681-697. [15] S. Deng, K. Ito and Z. Li, Three dimensional elliptic solvers for interface problems and applications. Journal of Computational Physics, 184(2003), 215-243. [16] Z. Li, and K. Ito, Maximum principle preserving schemes for interface problems with discontinuous coefficients. SIAM Journal on Scientific Computing, 23(2001), 1225-1242. [17] K. Schittkowski, QL-quadratic Programming, Version 1.5, 1991, http://www.uni-bayreuth .de/departments/math/kschittkowski/ql.htm. [18] I. Babuška, The finite element method for elliptic equations with discontinuous coefficients. Computing, 5:3(1970), 207-213. [19] K.W. Morton and D.F. Mayers, Numerical solution of partial differential equations, 1st ed., Cambridge University Press, Cambridge, 1995. |
[1] | Bei Zhang, Jikun Zhao, Minghao Li, Hongru Chen. STABILIZED NONCONFORMING MIXED FINITE ELEMENT METHOD FOR LINEAR ELASTICITY ON RECTANGULAR OR CUBIC MESHES [J]. Journal of Computational Mathematics, 2022, 40(6): 865-881. |
[2] | Yanping Chen, Qiling Gu, Qingfeng Li, Yunqing Huang. A TWO-GRID FINITE ELEMENT APPROXIMATION FOR NONLINEAR TIME FRACTIONAL TWO-TERM MIXED SUB-DIFFUSION AND DIFFUSION WAVE EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(6): 936-954. |
[3] | Tianliang Hou, Chunmei Liu, Chunlei Dai, Luoping Chen, Yin Yang. TWO-GRID ALGORITHM OF H1-GALERKIN MIXED FINITE ELEMENT METHODS FOR SEMILINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 667-685. |
[4] | Kai Wang, Na Wang. ANALYSIS OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR PARABOLIC INTERFACE PROBLEMS WITH NONSMOOTH INITIAL DATA [J]. Journal of Computational Mathematics, 2022, 40(5): 777-793. |
[5] | Hanzhang Hu, Yanping Chen. A CHARACTERISTIC MIXED FINITE ELEMENT TWO-GRID METHOD FOR COMPRESSIBLE MISCIBLE DISPLACEMENT PROBLEM [J]. Journal of Computational Mathematics, 2022, 40(5): 794-813. |
[6] | Abdelhamid Zaghdani, Sayed Sayari, Miled EL Hajji. A NEW HYBRIDIZED MIXED WEAK GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS* [J]. Journal of Computational Mathematics, 2022, 40(4): 499-516. |
[7] | Xinjiang Chen, Yanqiu Wang. A CONFORMING QUADRATIC POLYGONAL ELEMENT AND ITS APPLICATION TO STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(4): 624-648. |
[8] | Yaolin Jiang, Zhen Miao, Yi Lu. WAVEFORM RELAXATION METHODS FOR LIE-GROUP EQUATIONS* [J]. Journal of Computational Mathematics, 2022, 40(4): 649-666. |
[9] | Xiaonian Long, Qianqian Ding. A SECOND ORDER UNCONDITIONALLY CONVERGENT FINITE ELEMENT METHOD FOR THE THERMAL EQUATION WITH JOULE HEATING PROBLEM [J]. Journal of Computational Mathematics, 2022, 40(3): 354-372. |
[10] | Ram Manohar, Rajen Kumar Sinha. ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 147-176. |
[11] | Weijie Huang, Wei Jiang, Yan Wang. A θ-L APPROACH FOR SOLVING SOLID-STATE DEWETTING PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 275-293. |
[12] | Yang Chen, Chunlin Wu. DATA-DRIVEN TIGHT FRAME CONSTRUCTION FOR IMPULSIVE NOISE REMOVAL [J]. Journal of Computational Mathematics, 2022, 40(1): 89-107. |
[13] | Kaibo Hu, Ragnar Winther. WELL-CONDITIONED FRAMES FOR HIGH ORDER FINITE ELEMENT METHODS [J]. Journal of Computational Mathematics, 2021, 39(3): 333-357. |
[14] | Xiaodi Zhang, Weiying Zheng. MONOLITHIC MULTIGRID FOR REDUCED MAGNETOHYDRODYNAMIC EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(3): 453-470. |
[15] | Xiaoliang Song, Bo Chen, Bo Yu. ERROR ESTIMATES FOR SPARSE OPTIMAL CONTROL PROBLEMS BY PIECEWISE LINEAR FINITE ELEMENT APPROXIMATION [J]. Journal of Computational Mathematics, 2021, 39(3): 471-492. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||