Previous Articles Next Articles
Darko Volkov
[1] A. Aspri, E. Beretta, and A.L. Mazzucato, Dislocations in a layered elastic medium with applications to fault detection, arXiv preprint arXiv:2004.00321, 2020. [2] A. Aspri, E. Beretta, A.L. Mazzucato, and V. Maarten, Analysis of a model of elastic dislocations in geophysics, Archive for Rational Mechanics and Analysis, 236:1(2020), 71-111. [3] B. Calderhead, A general construction for parallelizing metropolis-hastings algorithms, Proceedings of the National Academy of Sciences, 111:49(2014), 17408-17413. [4] N.P. Galatsanos and A.K. Katsaggelos, Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation, IEEE Transactions on image processing, 1:3(1992), 322-336. [5] V. Girardin and N. Limnios, Applied probability, From Random Sequences to Stochastic Processes (e-book, Springer, Cham), 2018. [6] I. Gohberg, S. Goldberg, and N. Krupnik, Traces and determinants of linear operators, Integral Equations and Operator Theory, 116, Birkhäuser, 2012. [7] J. Kaipio and E. Somersalo, Statistical and computational inverse problems, Springer Science & Business Media, 160(2006). [8] R. Kress, V. Maz’ya, and V. Kozlov, Linear Integral Equations, 17, Springer, 1989. [9] Y. Okada, Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82:2(1992), 1018-1040. [10] D. Volkov, A double layer surface traction free green’s tensor, SIAM Journal on Applied Mathematics, 69:5(2009), 1438-1456. [11] D. Volkov, A parallel sampling algorithm for inverse problems with linear and nonlinear unknowns, arXiv preprint arXiv:2007.05347, 2020. [12] D. Volkov and J.C. Sandiumenge, A stochastic approach to reconstruction of faults in elastic half space, Inverse Problems & Imaging, 13:3(2019), 479-511. [13] D. Volkov, C. Voisin, and I.R. Ionescu, Reconstruction of faults in elastic half space from surface measurements, Inverse Problems, 33:5(2017). [14] D. Volkov, C. Voisin, and I.R. Ionescu, Determining fault geometries from surface displacements, Pure and Applied Geophysics, 174:4(2017), 1659-1678. |
[1] | Meisam Jozi, Saeed Karimi. DIRECT IMPLEMENTATION OF TIKHONOV REGULARIZATION FOR THE FIRST KIND INTEGRAL EQUATION [J]. Journal of Computational Mathematics, 2022, 40(3): 335-353. |
[2] | Yuanping Zhang, Yanfei Wang. THREE-DIMENSIONAL GRAVITY-MAGNETIC CROSS-GRADIENT JOINT INVERSION BASED ON STRUCTURAL COUPLING AND A FAST GRADIENT METHOD [J]. Journal of Computational Mathematics, 2019, 37(6): 758-777. |
[3] | Fan Jiang, Deren Han, Xiaofei Zhang. A TRUST-REGION-BASED ALTERNATING LEAST-SQUARES ALGORITHM FOR TENSOR DECOMPOSITIONS [J]. Journal of Computational Mathematics, 2018, 36(3): 351-373. |
[4] | Lingsheng Meng, Bing Zheng. STRUCTURED CONDITION NUMBERS FOR THE TIKHONOV REGULARIZATION OF DISCRETE ILL-POSED PROBLEMS [J]. Journal of Computational Mathematics, 2017, 35(2): 169-186. |
[5] | Zhifeng Wu, Si Li, Xueying Zeng, Yuesheng Xu, Andrzej Krol. REDUCING STAIRCASING ARTIFACTS IN SPECT RECONSTRUCTION BY AN INFIMAL CONVOLUTION REGULARIZATION [J]. Journal of Computational Mathematics, 2016, 34(6): 626-647. |
[6] | Rongfang Gong, Joseph Eichholz, Xiaoliang Cheng, Weimin Han. ANALYSIS OF A NUMERICAL METHOD FOR RADIATIVE TRANSFER EQUATION BASED BIOLUMINESCENCE TOMOGRAPHY [J]. Journal of Computational Mathematics, 2016, 34(6): 648-670. |
[7] | Heng Mao. ADAPTIVE CHOICE OF THE REGULARIZATION PARAMETER IN NUMERICAL DIFFERENTIATION [J]. Journal of Computational Mathematics, 2015, 33(4): 415-427. |
[8] | Guofeng Zhang, Zhong Zheng. BLOCK-SYMMETRIC AND BLOCK-LOWER-TRIANGULAR PRECONDITIONERS FOR PDE-CONSTRAINED OPTIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2013, 31(4): 370-381. |
[9] | Qun Chen, Jijun Liu. SOLVING THE BACKWARD HEAT CONDUCTION PROBLEM BY DATA FITTING WITH MULTIPLE REGULARIZING PARAMETERS [J]. Journal of Computational Mathematics, 2012, 30(4): 418-432. |
[10] | Alexandre Caboussat, Roland Glowinski. REGULARIZATION METHODS FOR THE NUMERICAL SOLUTION OF THE DIVERGENCE EQUATION ▽·u=f [J]. Journal of Computational Mathematics, 2012, 30(4): 354-380. |
[11] | Yunyun Ma, Fuming Ma, Heping Dong. A PROJECTION METHOD WITH REGULARIZATION FOR THE CAUCHY PROBLEM OF THE HELMHOLTZ EQUATION [J]. Journal of Computational Mathematics, 2012, 30(2): 157-176. |
[12] | Gang Bao, Faouzi Triki. ERROR ESTIMATES FOR THE RECURSIVE LINEARIZATION OF INVERSE MEDIUM PROBLEMS [J]. Journal of Computational Mathematics, 2010, 28(6): 725-744. |
[13] | Zhong-Zhi Bai, Yu-Mei Huang, Michael K. Ng. BLOCK-TRIANGULAR PRECONDITIONERS FOR SYSTEMS ARISING FROM EDGE-PRESERVING IMAGE RESTORATION [J]. Journal of Computational Mathematics, 2010, 28(6): 848-863. |
[14] |
Elaine T. Hale, Wotao Yin and Yin Zhang.
FIXED-POINT CONTINUATION APPLIED TO COMPRESSED SENSING: IMPLEMENTATION AND NUMERICAL EXPERIMENTS [J]. Journal of Computational Mathematics, 2010, 28(2): 170-194. |
[15] | Carlos Brito-Loeza and Ke Chen. Multigrid Method for a Modified Curvature Driven Diffusion Model for ImageInpainting [J]. Journal of Computational Mathematics, 2008, 26(6): 856-875. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||