Previous Articles Next Articles
Yanping Chen1, Qiling Gu2, Qingfeng Li2, Yunqing Huang2
[1] L. Chen and Y. Chen, Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods, J. Sci. Comput., 49(2011), 383-401. [2] Y. Chen, Y. Huang, and D. Yu, A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations, Int. J. Numer. Meth. Engng., 57(2003), 193-209. [3] P. Ciarlet, The finite element method for elliptic problems, North-Holland, New York, 1978. [4] S. Das and I. Dan, Fractional Order Signal Processing: Introductory Concepts and Applications, Springer, 2011. [5] L. Feng, F. Liu, and Ian Turner, Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady MHD Couette flow of a generalized OldroydB fluid, Fract. Calc. Appl. Anal., 21(2018), 1073-1103. [6] B.I. Henry and S.L. Wearne, Fractional reaction-diffusion, Phys. A, 276(2000), 448-455. [7] R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientific, 2011. [8] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 1999. [9] B. Jin, L. Raytcho, and Z. Zhou, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA Journal of Numerical Analysis., 36(2016), 197-221. [10] R.C. Koeller, Application of fractional calculus to the theory of viscoelasticity, J. Appl. Mech., 51(1984), 229-307. [11] Q. Li, Y. Chen, Y. Huang, and Y. Wang, Two-grid methods for nonlinear time fractional diffusion equations by L1-Galerkin FEM, Mathematics and Computers in Simulation., 185(2021), 436-451. [12] Q. Li, Y. Chen, Y. Huang, and Y. Wang. Two-grid methods for semilinear time fractional reaction diffusion equations by expanded mixed finite element method, Appl. Numer. Math., 157(2020), 38-54. [13] B. Li, T. Wang, and X. Xie, Analysis of the L1 scheme for fractional wave equations with nonsmooth data, Comput.Math.Appl., 90(2021), 1-12. [14] F. Liu, P. Zhuang, and Q. Liu, Numerical Methods and Applications for Fractional Partial Differential Equations, Science Press, Beijing, 2015. [15] Y. Liu, Y. Du, H. Li, and J. Wang, A two-grid finite element approximation for a nonlinear time-fractional Cable equation, Nonlinear Dyn., 85(2016), 2535-2548. [16] Y. Liu, Y. Du, H. Li, J. Li, and S. He, A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative, Comput. Math. Appl., 70(2015), 2474-2492. [17] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer, Berlin, 1997. [18] J. Ren and Z. Sun, Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with neumann boundary conditions, J. Sci. Comput., 56(2013), 381-408. [19] M. Stiassnie, On the application of fractional calculus for the formulation of viscoelastic models, Appl. Math. Model., 3(1979), 300-302. [20] Z. Sun, C. Ji, and R. Du, A new analytical technique of the L-type difference schemes for time fractional mixed sub-diffusion and diffusion-wave equations, Appl. Math. Lett., 102(2020), 106-115. [21] Z. Sun, The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations, Science Press, Beijing, 2009. [22] Y. Wei, Y. Zhao, Y. Tang, F. Wang, Z. Shi, and K. Li, High accuracy analysis of FEM for two-term time-fractional mixed diffusion-wave equations(in Chinese), Sci. Sin. Inform., 48(2018), 871-887. [23] J. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15(1994), 231-237. [24] J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM. J. Numer. Anal., 33(1996), 1759-1777. [25] B. Yuste and K. Lindenberg, Subdiffusion-limited A + A reactions, Phys. Rev. Lett., 87(2001), doi: 10.1103/PhysRevLett.87.118301. [26] Y. Zhang, Z. Sun, and X. Zhao, Compact alternating direction implicit scheme for the twodimensional fractional diffusion-wave equation, SIAM J. Numer. Anal., 50(2012), 1535-1555. [27] Y. Zhao, F. Wang, X. Hu, Z. Shi, and Y. Tang, Anisotropic linear triangle finite element approximation for multi-term time-fractional mixed diffusion and diffusion-wave equations with variable coefficient on 2D bounded domain, Comput. Math. Appl., 78(2019), 1705-1719. [28] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014. |
[1] | Baiying Dong, Xiufeng Feng, Zhilin Li. AN L∞ SECOND ORDER CARTESIAN METHOD FOR 3D ANISOTROPIC INTERFACE PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(6): 882-912. |
[2] | Bei Zhang, Jikun Zhao, Minghao Li, Hongru Chen. STABILIZED NONCONFORMING MIXED FINITE ELEMENT METHOD FOR LINEAR ELASTICITY ON RECTANGULAR OR CUBIC MESHES [J]. Journal of Computational Mathematics, 2022, 40(6): 865-881. |
[3] | Tianliang Hou, Chunmei Liu, Chunlei Dai, Luoping Chen, Yin Yang. TWO-GRID ALGORITHM OF H1-GALERKIN MIXED FINITE ELEMENT METHODS FOR SEMILINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 667-685. |
[4] | Kai Wang, Na Wang. ANALYSIS OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR PARABOLIC INTERFACE PROBLEMS WITH NONSMOOTH INITIAL DATA [J]. Journal of Computational Mathematics, 2022, 40(5): 777-793. |
[5] | Hanzhang Hu, Yanping Chen. A CHARACTERISTIC MIXED FINITE ELEMENT TWO-GRID METHOD FOR COMPRESSIBLE MISCIBLE DISPLACEMENT PROBLEM [J]. Journal of Computational Mathematics, 2022, 40(5): 794-813. |
[6] | Abdelhamid Zaghdani, Sayed Sayari, Miled EL Hajji. A NEW HYBRIDIZED MIXED WEAK GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS* [J]. Journal of Computational Mathematics, 2022, 40(4): 499-516. |
[7] | Xinjiang Chen, Yanqiu Wang. A CONFORMING QUADRATIC POLYGONAL ELEMENT AND ITS APPLICATION TO STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(4): 624-648. |
[8] | Xiaonian Long, Qianqian Ding. A SECOND ORDER UNCONDITIONALLY CONVERGENT FINITE ELEMENT METHOD FOR THE THERMAL EQUATION WITH JOULE HEATING PROBLEM [J]. Journal of Computational Mathematics, 2022, 40(3): 354-372. |
[9] | Ram Manohar, Rajen Kumar Sinha. ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 147-176. |
[10] | Weijie Huang, Wei Jiang, Yan Wang. A θ-L APPROACH FOR SOLVING SOLID-STATE DEWETTING PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 275-293. |
[11] | Kaibo Hu, Ragnar Winther. WELL-CONDITIONED FRAMES FOR HIGH ORDER FINITE ELEMENT METHODS [J]. Journal of Computational Mathematics, 2021, 39(3): 333-357. |
[12] | Xiaodi Zhang, Weiying Zheng. MONOLITHIC MULTIGRID FOR REDUCED MAGNETOHYDRODYNAMIC EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(3): 453-470. |
[13] | Xiaoliang Song, Bo Chen, Bo Yu. ERROR ESTIMATES FOR SPARSE OPTIMAL CONTROL PROBLEMS BY PIECEWISE LINEAR FINITE ELEMENT APPROXIMATION [J]. Journal of Computational Mathematics, 2021, 39(3): 471-492. |
[14] | Xiaocui Li, Xu You. MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 130-146. |
[15] | Michael Holst, Yuwen Li, Adam Mihalik, Ryan Szypowski. CONVERGENCE AND OPTIMALITY OF ADAPTIVE MIXED METHODS FOR POISSON'S EQUATION IN THE FEEC FRAMEWORK [J]. Journal of Computational Mathematics, 2020, 38(5): 748-767. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||