Huifang Zhou1,2, Zhiqiang Sheng3,4, Guangwei Yuan3
[1] A. Cangiani, E.H. Georgoulis, and Y. A. Sabawi, Adaptive discontinuous Galerkin methods for elliptic interface problems, Math. Comput., 87(2018), 2675-2707. [2] F. Cao, Z. Sheng, and G. Yuan, Monotone finite volume schemes for diffusion equation with imperfect interface on distorted meshes, J. Sci. Comput., 76(2018), 1055-1077. [3] T. Chernogorova, R.E. Ewing, O. Iliev, and R. Lazarov, Numer. Treat. Multiph. Flows Porous Media, Springer Berlin Heidelberg, 2000. [4] R. Costa, J.M. Nóbrega, S. Clain, and G. J. Machado, Very high-order accurate polygonal mesh finite volume scheme for conjugate heat transfer problems with curved interfaces and imperfect contacts, Comput. Methods Appl. Mech. Eng., 357(2019), 112560. [5] X. He, T. Lin, and Y. Lin, A selective immersed discontinuous Galerkin method for elliptic interface problems, Math. Methods Appl. Sci., 37(2014), 983-1002. [6] H. Huang, J. Li, and J. Yan, High order symmetric direct discontinuous Galerkin method for elliptic interface problems with fitted mesh, J. Comput. Phys., 409(2020), 109301. [7] A. Jain, R. Kanapady, and K. Tamma, Local discontinuous Galerkin method for parabolic problems involving imperfect contact surfaces, Collection of Technical Papers-44th AIAA Aerospace Sciences Meeting, 10(2006), 7076-7086. [8] D. Jia, Z. Sheng, and G. Yuan, An extremum-preserving iterative procedure for the imperfect interface problem, Commun. Comput. Phys., 25(2019), 1-18. [9] B.S. Jovanovic, L.D. Ivanovic, and E.E. Suli, Convergence of finite-difference schemes for elliptic equations with variable coefficients, IMA J. Numer. Anal., 7(1987), 301-305. [10] J. Kačur and R. Van Keer, Numerical method for a class of parabolic problems in composite media, Numer. Methods Partial Differ. Equ., 9(1993), 711-731. [11] Z. Li and K. Ito, Maximum principle preserving schemes for interface problems with discontinuous coefficients, SIAM J. Sci. Comput., 23(2001), 339-361. [12] T. Lin, Y. Lin, and X. Zhang, Partially penalized immersed finite element methods for elliptic interface problems, SIAM J. Numer. Anal., 53(2015), 1121-1144. [13] T. Lin, Q. Yang, and X. Zhang, A priori error estimates for some discontinuous Galerkin immersed finite element methods, J. Sci. Comput., 65(2015), 875-894. [14] K. Lipnikov, M. Shashkov, D. Svyatskiy, and Y. Vassilevski, Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes, J. Comput. Phys., 227(2007), 492-512. [15] A.W. Pratt, Heat transmission in buildings, Wiley, Chichester, 1981. [16] P. Rodrigo, A. Rocha, and M. E. Cruz, Computation of the effective conductivity of unidirectional fibrous composites with an interfacial thermal resistance, Numer. Heat Transf. Part A Appl., 39(2001), 179-203. [17] Z. Sheng and G. Yuan, A nine point scheme for the approximation of diffusion operators on distorted quadrilateral meshes, SIAM J. Sci. Comput., 30(2008), 1341-1361. [18] Z. Sheng and G. Yuan, The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes, J. Comput. Phys., 230(2011), 2588-2604. [19] L. Wang, S. Hou, and L. Shi, A weak formulation for solving the elliptic interface problems with imperfect contact, Adv. Appl. Math. Mech., 9(2017), 1189-1205. [20] J. Weisz, On an iterative method for the solution of discretized elliptic problems with imperfect contact condition, J. Comput. Appl. Math., 72(1996), 319-333. [21] J. Xu, F. Zhao, Z. Sheng, and G. Yuan, A nonlinear finite volume scheme preserving maximum principle for diffusion equations, Commun. Comput. Phys., 29(2021), 747-766. [22] Q. Yang and X. Zhang, Discontinuous Galerkin immersed finite element methods for parabolic interface problems, J. Comput. Appl. Math., 299(2016), 127-139. [23] G. Yuan and Z. Sheng, Monotone finite volume schemes for diffusion equations on polygonal meshes, J. Comput. Phys., 227(2008), 6288-6312. [24] H. Zhou, Z. Sheng, and G. Yuan, A finite volume method preserving maximum principle for the diffusion equations with imperfect interface, Appl. Numer. Math., 158(2020), 314-335. [25] Q. Zhuang and R. Guo, High degree discontinuous Petrov-Galerkin immersed finite element methods using fictitious elements for elliptic interface problems, J. Comput. Appl. Math., 362(2019), 560-573. |
[1] | Piotr Skrzypacz, Dongming Wei. ON THE DISCRETE MAXIMUM PRINCIPLE FOR THE LOCAL PROJECTION SCHEME WITH SHOCK CAPTURING [J]. Journal of Computational Mathematics, 2017, 35(5): 547-568. |
[2] | Guixia Lv, Shunkai Sun, Longjun Shen. DISCRETE MAXIMUM PRINCIPLE AND CONVERGENCE OF POISSON PROBLEM FOR THE FINITE POINT METHOD [J]. Journal of Computational Mathematics, 2017, 35(3): 245-264. |
[3] | Xiaofeng Cai, Jun Zhu, Jianxian Qiu. HERMITE WENO SCHEMES WITH STRONG STABILITY PRESERVING MULTI-STEP TEMPORAL DISCRETIZATION METHODS FOR CONSERVATION LAWS [J]. Journal of Computational Mathematics, 2017, 35(1): 52-73. |
[4] | Changna Lu, Jianxian Qiu, Ruyun Wang. A NUMERICAL STUDY FOR THE PERFORMANCE OF THE WENO SCHEMES BASED ON DIFFERENT NUMERICAL FLUXES FOR THE SHALLOW WATER EQUATIONS [J]. Journal of Computational Mathematics, 2010, 28(6): 807-825. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||