Haishen Dai1, Qiumei Huang1, Cheng Wang2
[1] M. Adimy and F. Crauste, Global stability of a partial differential equation with distributed delay due to cellular replication, Nonlinear Anal. Theory Meth. Appl., 54(2003), 1469-1491. [2] G. Beylkin, J. Keiser and L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys., 147(1998), 362-387. [3] P. Brenner, M. Crouzeix and V. Thomée, Single step methods for inhomogeneous linear differential equations in Banach space, Rairo Anal. Numer. Anal., 16(1982), 5-26. [4] H. Brunner, Q. Huang and H. Xie, Discontinuous galerkin methods for delay differential equations of pantograph type, SIAM J. Numer. Anal., 48(2010), 1944-1967. [5] W. Chen, W. Li, Z. Luo, C. Wang and X. Wang, A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection, EASIM Math. Model. Numer. Anal., 54(2020), 727-750. [6] W. Chen, W. Li, C. Wang, S. Wang and X. Wang, Energy stable higher order linear ETD multistep methods for gradient flows:application to thin film epitaxy, Res. Math. Sci., 7(2020), 13. [7] K. Cheng, Z. Qiao, and C. Wang, A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability, J. Sci. Comput., 81(2019), 154-185. [8] K. Cheng and C. Wang, Long time stability of high order multi-step numerical schemes for two-dimensional incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 54(2016), 3123-3144. [9] Z. Cheng and Y. Lin, The exact solution of a class of delay parabolic partial differential equation, J. Natural Sci. Heilongjiang Univ., 25(2008), 155-162. [10] P. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, Philadelphia, PA, 1978. [11] S. Cox and P. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys., 176(2002), 430-455. [12] Q. Du, L. Ju, X. Li and Z. Qiao, Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation, SIAM J. Numer. Anal., 57(2019), 875-898. [13] Q. Du, L. Ju, X. Li and Z. Qiao, Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes, SIAM Review, 63(2021), 317-359. [14] B. Ehle, A-stable methods and Padé approximations to the exponential, SIAM J. Math. Anal., 4(1973), 671-680. [15] Y. Gong and J. Zhao, Energy-stable Runge-Kutta schemes for gradient flow models using the energy quadratization approach, Appl. Math. Lett., 94(2019), 224-231. [16] S. Gottlieb and C. Wang, Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers' equation, J. Sci. Comput., 53(2012), 102-128. [17] S. Gourley and Y. Kuang, A delay reaction-diffusion model of the spread of bacteriophage infection, SIAM J. Appl. Math., 65(2005), 550-566. [18] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer., 19(2010), 209-286. [19] Q. Huang, H. Xie and H. Brunner, Superconvergence of discontinuous Galerkin solutions for delay differential equations of pantograph type, SIAM J. Sci. Comput., 33(2011), 2664-2684. [20] Q. Huang, H. Xie and H. Brunner, The hp discontinuous Galerkin method for delay differential equations with nonlinear vanishing dealy, SIAM J. Sci. Comput., 35(2013), 1604-1620. [21] Z. Jackiewicz and B. Zubik-Kowal, Spectral collocation and waveform relaxation methods for nonlinear delay partial differential equation, Appl. Numer. Math., 56(2006), 433-443. [22] K. Jiang, Q. Huang and X. Xu, Discontinuous galerkin methods for multi-pantograph delay differential equations, Adv. Appl. Math. Mech., 12(2020), 189-211. [23] L. Ju, X. Li, Z. Qiao and H. Zhang, Energy stability and convergence of exponential time differencing schemes for the epitaxial growth model without slope selection, Math. Comp., 87(2018), 1859-1885. [24] L. Ju, J. Zhang and Q. Du, Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations, Comput. Mat. Sci., 108(2015), 272-282. [25] L. Ju, J. Zhang, L. Zhu and Q. Du, Fast explicit integration factor methods for semilinear parabolic equations, J. Sci. Comput., 62(2015), 431-455. [26] A. Kassam and L. Trefethen, Fourth-order time stepping for stiff PDEs, SIAM J. Sci. Comput., 26(2005), 1214-1233. [27] A. Khaliq, J. Martín-Vaquero and B. Wade, Smoothing schemes for reaction-diffusion systems with non-smooth data, J. Comput. Appl. Math., 223(2009), 374-386. [28] A. Khaliq, E. Twizell and D. Voss, On parallel algorithms for semi-discretized parabolic partial differential equations based on sub-diagonal Padé approximations, Numer. Meth. Partial Differential Equations, 9(1993), 107-116. [29] A. Khaliq and B. Wade, On smoothing of the Crank-Nicolson scheme for non-homogeneous parabolic problems, J. Comput. Meth. Sci. Engr., 1(2001), 107-124. [30] D. Li, C. Zhang and H. Qin, LDG method for reaction-diffusion dynamical systems with time delay, Appl. Math. Comput., 217(2011), 9173-9181. [31] X. Lu, Combined iterative methods for numerical solutions of parabolic problems with time delay, Appl. Math. Comput., 89(1998), 213-224. [32] A. Rezounenko and J. Wu, A non-local pde model for population dynamics with state-selective delay:local theory and global attractors, J. Comput. Appl. Math., 190(2006), 99-113. [33] J. Ruiz-Ramirez and J. Macśas-Dśaz, A skew symmetry-preserving computational technique for obtaining the positive and the bounded solutions of a time delayed advection diffusion-reaction equation, J. Comput. Appl. Math., 250(2013), 256-269. [34] H. Smith and X. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31(2000), 514-534. [35] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, Berlin, Germany, 2006. [36] P. Wang, Asymptotic stability of a time-delayed diffusion system, J. Appl. Mech., 30(1963), 500-504. [37] T. Wang, Generalization of gronwall's inequality and its applications in functional differential equations, Commun. Appl. Anal., 19(2015), 679-688. [38] X. Wang, L. Ju and Q. Du, Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models, J. Comput. Phys., 316(2016), 21-38. [39] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, NY, 1996. [40] J. Yang, C. Wang, J. Li and Z. Meng, Necessary and sufficient conditions for oscillations of neutral hyperbolic partial differential equations with delays, J. Partial Diff. Equ., 19(2006), 319-324. [41] G. Zhang, A. Xiao and J. Zhou, Implicit-explicit multistep finite element methods for nonlinear convection-diffusion-reaction equations with time delay, J. Comput. Math., 16(2017), 1029-0625. [42] Q. Zhang and C. Zhang, A new linearized compact multisplitting scheme for the nonlinear convection-reaction-diffusion equation with delay, Commun. Nonlinear Sci. Numer. Simul., 18(2013), 3278-3288. [43] Y. Zhang, The stability of linear partial differential systems with time delay, J. Sys. Sci., 26(1995), 1747-1754. [44] J. Zhao, R. Zhan and A. Ostermann, Stability analysis of explicit exponential integrators for delay differential equations, Appl. Numer. Math., 109(2016), 96-108. [45] J. Zhao, R. Zhan and Y. Xu, Explicit exponential Runge Kutta methods for semilinear parabolic delay differential equations, Math. Comput. Simu., 178(2020), 366-381. [46] L. Zhu, L. Ju and W. Zhao, Fast high-order compact exponential time differencing Runge-Kutta methods for second-order semilinear parabolic equations, J. Sci. Comput., 67(2016), 1043-1065. |
[1] | Wanfu Tian, Liqiu Song, Yonghai Li. A STABILIZED EQUAL-ORDER FINITE VOLUME METHOD FOR THE STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2012, 30(6): 615-628. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||