Yanfang Zhang
[1] K. Arrow and G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica, 22:3(1954), 265-290. [2] J.V. Burke, X. Chen, and H. Sun, Subdifferentiation and smoothing of nonsmooth integral functionals, Math. Program., 181(2019), 229-264. [3] J.V. Burke, T. Hoheisel, and C. Kanzow, Gradient consistency for integral-convolution smoothing fucntions, Set-Valued Var. Anal., 21(2013), 359-376. [4] X. Chen, Methods for nonsmooth, nonconvex minization, Math. Program., 134:1(2012), 71-99. [5] X. Chen, T.K. Pang and R.J.B. Wets, Two-stage stochastic variational inequalities:an ERMsolution procedure, Math. Program., 165:1(2017), 71-111. [6] X. Chen, H. Sun and H. Xu, Discrete approximation of two-stage stochastic and distributionally robust linear complementarity problems, Math. Program., 177(2019), 255-289. [7] X. Chen and Z. Wang, Differential variational inequality approach to dynamic games with shared constraints, Math. Program., 146:1-2(2014), 379-408. [8] X. Chen, R.J.B. Wets, and Y. Zhang, Stochastic variational inequalities:residual minimization smoothing/sample average approximations, SIAM J. Optim., 22:2(2012), 649-673. [9] X. Chen, A. Shapiro and H. Sun, Convergence analysis of smaple average approximation of twostage stochastic generalized equations, SIAM. J. Optim., 29:1(2019), 135-161. [10] F.H. Clarke, Optimization and nonsmooth analysis, John Wiley, New York, 1983. [11] A. Conejo, F. Nogales, and J. Arroyo, Risk-constrained self-scheduling of a thermal power producer, IEEE Trans. Power Syst., 19:3(2004), 1569-1574. [12] F. Facchinei, A. Fischer, and V. Piccialli, On generalized Nash games and variational inequalites, Oper. Res. Lett., 35:2(2007), 159-164. [13] P.T. Harker, Generalized Nash games and quasi-variational inequalities, Eur. J. Oper. Res., 54:1(1991), 81-94. [14] B.F. Hobbs, Linear complementarity models of Nash-cournot competition in Bilateral and POOLCO power markets, IEEE Trans. Power Syst., 16:2(2001), 194-202. [15] B.F. Hobbs and J.S. Pang, Spatial oligopolistic equilibria with arbitrage, shared resources, and price function conjectures, Math. Program., 101:1(2004), 57-94. [16] T. Ichiishi, Game theory for economic analysis, Academic press, New York, 1983. [17] B. Jadamba and F. Raciti, Variational inequality approach to stochastic nash equilibrium problems with an application to cournot oligopoly, J. Optim. Theory Appl., 165:3(2015), 1050-1070. [18] H. Jiang, U. Shanbhag, and S. Meyn, Distributed computation of equilibria in misspecifie convex stochastic nash games, IEEE Trans. Autom. Control, 63:2(2015), 360-371. [19] H. Jiang and H. Xu, Stochastic approximation approximation approaches to the stochastic variational inequality problems, IEEE Trans. Autom. Control, 53:6(2008), 1462-1475. [20] A. Kannan, U. Shanbhag, and H. Kim, Addressing supply-side risk in uncertain power markets:stochastic nash models, scalable algorithms and error analysis, Optim. Methods Softw., 28:5(2013), 1095-1138. [21] J. Koshal, A. Nedić, and U.V. Shanbhag, Regularized iterative stochastic approximation methods for stochastic variational inequality problems, IEEE Trans. Autom. Control, 58:3(2013), 594-609. [22] O. Mangasarian and T.H. Shiau, Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems, SIAM J. Control Optim., 25:3(1987), 583-595. [23] L. Mckenzie, On the existence of a general equilibrium for a competitive market, Econometrica, 27:1(1959), 55-71. [24] K. Nabetani, P. Tseng, and M. Fukushima, Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints, Comput. Optim. Appl., 48:3(2011), 423-452. [25] J. Nash, Equilibrium points in n-person games, Proc. Natl. Acad. Sci., 36:1(1950), 48-49. [26] J.S. Pang and M. Fukushima, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games, Comput. Manag. Sci., 2:1(2005), 21-56. [27] U. Ravat and U.V. Shanbhag, On the charaterization of solution sets of smooth and nonsmooth convex stochastic Nash games, SIAM J. Optim., 21:3(2011), 1168-1199. [28] R.T. Rockafellar and J. Sun, Solving monotone stochastic variational inequalities and complementarity problems by progressive hedging, Math. Program., 174(2019), 453-471. [29] R.T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, J. Risk, 2(2000), 493-517. [30] R.T. Rockafellar and R.J.B. Wets, Variational Analysis, Springer, New York, 1998. [31] R.T. Rockafellar and R.J.B. Wets, Stochastic variational inequalities:single-stage to multistage, Math. Program., 165:1(2017), 331-360. [32] J. Rosen, Existence and uniqueness of equilibrium points for concave n-person games, Econometrica, 33:3(1965), 520-534. [33] V. Singh, O. Jouini, and A. Lisser, Existence of nash equilibrium for chance-constrained games, Oper. Res. Lett., 44:5(2016), 640-644. [34] V.V. Singh and A. Lisser, Variational inequality formulation for the games with random payoffs, J. Glob. Optim., 72:4(2018), 743-760. [35] H. Sun and X. Chen, Two-stage stochastic variational inequalities:Theory, Algorithms and Applications, J. Oper. Res. Soc. China, 9(2019), 1-32. [36] H. Xu and D. Zhang, Stochastic nash equilibrium problems:sample average approximation and applications, Comput. Optim. Appl., 55:3(2013), 597-645. |
[1] | Jie Jiang, Yun Shi, Xiaozhou Wang, Xiaojun Chen. REGULARIZED TWO-STAGE STOCHASTIC VARIATIONAL INEQUALITIES FOR COURNOT-NASH EQUILIBRIUM UNDER UNCERTAINTY [J]. Journal of Computational Mathematics, 2019, 37(6): 813-842. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||