Datong Zhou1, Jing Chen1, Hao Wu1, Dinghui Yang1, Lingyun Qiu2,3
[1] J.D. Benamou and Y. Brenier, A computational fluid mechanics solution to the MongeKantorovich mass transfer problem, Numer. Math., 84(2000), 375-393. [2] J.D. Benamou, G. Carlier, M. Cuturi, L. Nenna and G. Peyr, Iterative Bregman projections for regularized transportation problems, SIAM J. Sci. Comput., 37:2(2015), A1111-A1138. [3] J.D. Bray, R.B. Seed and H.B. Seed, Analysis of earthquake fault rupture propagation through cohesive soil, J. Geotech. Engrg., 120:3(1994), 562-580. [4] J. Chen, Y. Chen, H. Wu and D. Yang, The quadratic Wasserstein metric for Earthquake Location, J. Comput. Phys., 373(2018), 188-209. [5] J. Chen, H. Jing, P. Tong, H. Wu and D. Yang, The auxiliary function method for waveform based earthquake location, J. Comput. Phys., 413(2020), 109453. [6] J. Chen, S.K. Kufner, X. Yuan, B. Heit, H. Wu, D. Yang, B. Schurr, and S. Kay, Lithospheric Delamination Beneath the Southern Puna Plateau Resolved by Local Earthquake Tomography, J. Geophys. Res.:Solid Earth, 125(2020), e2019JB019040. [7] L. Chizat, G. Peyré, B. Schmitzer and F.X. Vialard, An Interpolating Distance Between Optimal Transport and Fisher-Rao Metrics, Found. Comput. Math., 18:1(2018), 1-44. [8] L. Chizat, G. Peyré, B. Schmitzer and F.X. Vialard, Scaling Algorithms for unbalanced Optimal Transport Problems, Math. Comput., 87(2018), 2563-2609. [9] F.D. Col, M. Papadopoulou, E. Koivisto, Ƚ. Sito, M. Savolainen and L.V. Socco, Application of surface-wave tomography to mineral exploration:a case study from Siilinjärvi, Finland, Geophys. Prospect., 68:1(2020), 254-269. [10] M.A. Dablain, The application of high-order differencing to the scalar wave equation, Geophysics, 51:1(1986), 54-66. [11] B. Engquist and B.D. Froese, Application of the Wasserstein metric to seismic signals, Commun. Math. Sci., 12:5(2014), 979-988. [12] B. Engquist, B.D. Froese and Y. Yang, Optimal transport for seismic full waveform inversion, Commun. Math. Sci., 14:8(2016), 2309-2330. [13] B. Engquist, K. Ren and Y. Yang, The quadratic Wasserstein metric for inverse data matching, Inverse Probl., 36:5(2020), 055001. [14] B. Engquist and Y. Yang, Seismic imaging and optimal transport, Commun. Inf. Syst., 19:2(2019), 95-145. [15] T.O. Gallouët, M. Laborde and L. Monsaingeon, An unbalanced Optimal Transport splitting scheme for general advection-reaction-diffusion problems, ESAIM:COCV, 25(2019), 8. [16] W. Gangbo, W. Li, S. Osher and M. Puthawala, Unnormalized optimal transport, J. Comput. Phys., 399(2019), 108940. [17] M.C. Ge, Analysis of source location algorithms Part I:Overview and non-iterative methods, J. Acoust. Emiss., 21(2003), 14-28. [18] S. Kondratyev, L. Monsaingeon and D. Vorotnikov, A new optimal transport distance on the space of finite Radon measures, Adv. Differ. Equat., 21(2016), 1117-1164. [19] D. Komatitsch and J. Tromp, A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation, Geophys. J. Int., 154(2003), 146-153. [20] J.J. Kosowsky and A.L. Yuille, The invisible hand algorithm:Solving the assignment problem with statistical physics, Neural Netw., 7:3(1994), 477-490. [21] T. Le, M. Yamada, K. Fukumizu and M. Cuturi, Tree-Sliced Variants of Wasserstein Distances, arXiv:1902.00342v3, 2019. [22] J. Li, D. Yang, H. Wu and X. Ma, A low-dispersive method using the high-order stereo-modelling operator for solving 2-D wave equations, Geophys. J. Int., 210(2017), 1938-1964. [23] R. Li and F. Yang, A reconstructed discontinuous approximation to Monge-Ampere equation in least square formation, arXiv:2010.09921v3, 2019. [24] M. Liero, A. Mielke and G. Savaré, Optimal transport in competition with reaction:the HellingerKantorovich distance and geodesic curves, SIAM J. Math. Analysis, 48:4(2016), 2869-2911. [25] M. Liero, A. Mielke and G. Savaré, Optimal Entropy-Transport problems and a new HellingerKantorovich distance between positive measures, Invent. Math., 211(2018) 969-1117. [26] Q. Liu, J. Polet, D. Komatitsch and J. Tromp, Spectral-Element Moment Tensor Inversion for Earthquakes in Southern California, Bull. seism. Soc. Am., 94:5(2004), 1748-1761. [27] R. Madariaga, Seismic Source Theory, in Treatise on Geophysics (Second Edition), S. Gerald (ed.), Elsevier B.V., 2015, 51-71. [28] C. Meng, Y. Ke, J. Zhang, M. Zhang, W. Zhong and P. Ma, Large-scale optimal transport map estimation using projection pursuit, Adv. Neural Inf. Process. Syst., 32(2019), 8118-8129. [29] C. Meng, J. Yu, J. Zhang, P. Ma and W. Zhong, Sufficient dimension reduction for classification using principal optimal transport direction, arXiv:2010.09921v3, 2020. [30] L. Métivier, R. Brossier, Q. Mérigot, E. Oudet and J. Virieux, Measuring the misfit between seismograms using an optimal transport distance:application to full waveform inversion, Geophys. J. Int., 205(2016), 345-377. [31] L. Métivier, R. Brossier, Q. Mérigot, E. Oudet and J. Virieux, An optimal transport approach for seismic tomography:application to 3D full waveform inversion, Inverse Probl., 32(2016), 115008. [32] W. Pan and Y. Wang, On the influence of different misfit functions for attenuation estimation in viscoelastic full-waveform inversion:synthetic study, Geophys. J. Int., 221:2(2020), 1292-1319. [33] G. Peyr and M. Cuturi, Computational Optimal Transport:With Applications to Data Science, Found. Trends Mach. Learn., 11:5-6(2019), 355-607. [34] B. Piccoli and F. Rossi, Generalized Wasserstein Distance and its Application to Transport Equations with Source, Arch. Rational Mech. Anal., 211(2014), 335-358. [35] L. Qiu, J. Ramos-Martnez, A. Valenciano, Y. Yang and B. Engquist, Full-waveform inversion with an exponentially encoded optimal-transport norm, SEG Tech. Program Expanded Abstr., (2017) 1286-1290. [36] N. Rawlinson, S. Pozgay and S. Fishwick, Seismic tomography:A window into deep Earth, Phys. Earth Planet. Inter., 178(2010), 101-135. [37] F. Santambrogio, Optimal Transport for Applied Mathematicians, Birkhäuser, 2015. [38] C. Satriano, A. Lomax and A. Zollo, Real-Time Evolutionary Earthquake Location for Seismic Early Warning, Bull. seism. Soc. Am., 98:3(2008), 1482-1494. [39] B. Schmitzer, Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems, SIAM J. Sci. Comput., 41:3(2019), A1443-A1481. [40] M. Sharify, S. Gaubert, and L. Grigori, Solution of the optimal assignment problem by diagonal scaling algorithms, arXiv:1104.3830, 2013. [41] P. Tong, D. Zhao and D. Yang, Tomography of the 1995 Kobe earthquake area:comparison of finite-frequency and ray approaches, Geophys. J. Int., 187(2011), 278-302. [42] P. Tong, D. Zhao, D. Yang, X. Yang, J. Chen and Q. Liu, Wave-equation-based travel-time seismic tomography-Part 1:Method, Solid Earth, 5(2014), 1151-1168. [43] P. Tong, D. Zhao, D. Yang, X. Yang, J. Chen and Q. Liu, Wave-equation-based travel-time seismic tomography C Part 2:Application to the 1992 Landers earthquake (Mw 7.3) area, Solid Earth, 5(2014), 1169-1188. [44] P. Tong, D. Yang, Q. Liu, X. Yang and J. Harris, Acoustic wave-equation-based earthquake location, Geophys. J. Int., 205(2016), 464-478. [45] C. Villani, Optimal Transport:Old and New, Springer Science & Business Media, 2008. [46] F. Waldhauser and W.L. Ellsworth, A double-difference earthquake location algorithm:Method and application to the northern Hayward Fault, California, Bull. seism. Soc. Am., 90:6(2000), 1353-1368. [47] X.J. Wang, On the design of a reflector antenna II, Calc. Var. Partial Dif., 20:3(2004), 329-341. [48] Z. Wang, D. Zhou, M. Yang, Y. Zhang, C. Bao and H. Wu, Robust Document Distance with Wasserstein-Fisher-Rao Metric, in Proceedings of The 12th Asian Conference on Machine Learning, PMLR 129(2020), 721-736. [49] X. Wen, High Order Numerical Quadratures to One Dimensional Delta Function Integrals, SIAM J. Sci. Comput., 30:4(2008), 1825-1846. [50] H. Wu, J. Chen, X. Huang and D. Yang, A new earthquake location method based on the waveform inversion, Commun. Comput. Phys., 23:1(2018), 118-141. [51] H. Wu and X. Yang, Eulerian Gaussian beam method for high frequency wave propagation in the reduced momentum space, Wave Motion, 50:6(2013), 1036-1049. [52] Y. Yang, B. Engquist, J. Sun and B.D. Froese, Application of Optimal transport and the quadratic Wasserstein metric to Full-Waveform-Inversion, Geophysics, 83:1(2018), R43-R62. [53] Y. Yang and B. Engquist, Analysis of optimal transport and related misfit functions in fullwaveform inversion, Geophysics, 83:1(2018), A7-A12. [54] Z. Yan and Y. Wang, Full waveform inversion with sparse structure constrained regularization, J. Inverse Ill-Posed Probl., 26:2(2018), 243-257. [55] X. Zhao, Z. Wang, Y. Zhang and H. Wu A Relaxed Matching Procedure for Unsupervised BLI, in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, (2020), 3036-3041. [56] W. Zhang, Acoustic multi-parameter full waveform inversion based on the wavelet method, Inverse Probl. Sci. Eng., 29:2(2021), 220-247. [57] W. Zhang and J. Luo, Full-waveform velocity inversion based on the acoustic wave equation, Am. J. Comput. Math., 3(2013), 13-20. |
[1] | Chenglong Bao, Jianfeng Cai, Jae Kyu Choi, Bin Dong, Ke Wei. IMPROVED HARMONIC INCOMPATIBILITY REMOVAL FOR SUSCEPTIBILITY MAPPING VIA REDUCTION OF BASIS MISMATCH [J]. Journal of Computational Mathematics, 2022, 40(6): 913-935. |
[2] | Xiaoyu Wang, Ya-xiang Yuan. STOCHASTIC TRUST-REGION METHODS WITH TRUST-REGION RADIUS DEPENDING ON PROBABILISTIC MODELS [J]. Journal of Computational Mathematics, 2022, 40(2): 294-334. |
[3] | Mohammed Harunor Rashid. METRICALLY REGULAR MAPPING AND ITS UTILIZATION TO CONVERGENCE ANALYSIS OF A RESTRICTED INEXACT NEWTON-TYPE METHOD [J]. Journal of Computational Mathematics, 2022, 40(1): 44-69. |
[4] | Miyoun Jung, Myungjoo Kang. IMAGE RESTORATION UNDER CAUCHY NOISE WITH SPARSE REPRESENTATION PRIOR AND TOTAL GENERALIZED VARIATION [J]. Journal of Computational Mathematics, 2021, 39(1): 81-107. |
[5] | Yuanping Zhang, Yanfei Wang. THREE-DIMENSIONAL GRAVITY-MAGNETIC CROSS-GRADIENT JOINT INVERSION BASED ON STRUCTURAL COUPLING AND A FAST GRADIENT METHOD [J]. Journal of Computational Mathematics, 2019, 37(6): 758-777. |
[6] | Yuchao Tang, Guorong Wu, Chuanxi Zhu. A FIRST-ORDER SPLITTING METHOD FOR SOLVING A LARGE-SCALE COMPOSITE CONVEX OPTIMIZATION PROBLEM [J]. Journal of Computational Mathematics, 2019, 37(5): 666-688. |
[7] | Noppadol Chumchob, Isararat Prakit. AN IMPROVED VARIATIONAL MODEL AND ITS NUMERICAL SOLUTIONS FOR SPECKLE NOISE REMOVAL FROM REAL ULTRASOUND IMAGES [J]. Journal of Computational Mathematics, 2019, 37(2): 201-239. |
[8] | Ying Cui, Defeng Sun. A COMPLETE CHARACTERIZATION OF THE ROBUST ISOLATED CALMNESS OF NUCLEAR NORM REGULARIZED CONVEX OPTIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2018, 36(3): 441-458. |
[9] | Michael Ulbrich, Stefan Ulbrich, Daniela Bratzke. A MULTIGRID SEMISMOOTH NEWTON METHOD FOR SEMILINEAR CONTACT PROBLEMS [J]. Journal of Computational Mathematics, 2017, 35(4): 486-528. |
[10] | Penghang Yin, Jack Xin. ITERATIVE l1 MINIMIZATION FOR NON-CONVEX COMPRESSED SENSING [J]. Journal of Computational Mathematics, 2017, 35(4): 439-451. |
[11] | Jinyan Fan, Jianyu Pan, Hongyan Song. A RETROSPECTIVE TRUST REGION ALGORITHM WITH TRUST REGION CONVERGING TO ZERO [J]. Journal of Computational Mathematics, 2016, 34(4): 421-436. |
[12] | Liyan Ma, Michael K. Ng, Jian Yu, Tieyong Zeng. EFFICIENT BOX-CONSTRAINED TV-TYPE-l1 ALGORITHMS FOR RESTORING IMAGES WITH IMPULSE NOISE [J]. Journal of Computational Mathematics, 2013, 31(3): 249-270. |
[13] | Alexandre Caboussat, Roland Glowinski. REGULARIZATION METHODS FOR THE NUMERICAL SOLUTION OF THE DIVERGENCE EQUATION ▽·u=f [J]. Journal of Computational Mathematics, 2012, 30(4): 354-380. |
[14] | M. Hintermuller, Michael Hinze, Ronald H.W. Hoppe. WEAK-DUALITY BASED ADAPTIVE FINITE ELEMENT METHODS FOR PDE-CONSTRAINED OPTIMIZATION WITH POINTWISE GRADIENT STATE-CONSTRAINTS [J]. Journal of Computational Mathematics, 2012, 30(2): 101-123. |
[15] | Changfeng Ma. A FEASIBLE SEMISMOOTH GAUSS-NEWTON METHOD FOR SOLVING A CLASS OF SLCPS [J]. Journal of Computational Mathematics, 2012, 30(2): 197-222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||