Huijun Fan1,2, Yanmin Zhao1,3, Fenling Wang1,3, Yanhua Shi1,3, Fawang Liu4,5
[1] Y. Liu, Z. Yu, H. Li, F. Liu, J. Wang, Time two-mesh algorithm combined with finite element method for time fractional water wave model, Int. J. Heat. Mass. Tran., 120(2018), 1132-1145. [2] S. Qin, F. Liu, I. Turner, V. Vegh, Q. Yu, Q. Yang, Multi-term time-fractional Bloch equations and application in magnetic resonance imaging, J. Comput. Appl. Math., 319(2017), 308-319. [3] H. Wang, C. Weng, Z. Song, J. Cai, Research on the law of spatial fractional calculus diffusion equation in the evolution of chaotic economic system, Chaos Solitons Fractals, 131(2020), 109462. [4] Tomasz P. Stefański, J. Gulgowski, Signal propagation in electromagnetic media described by fractional-order models, Commun. Nonlinear Sci. Numer. Simul., 82(2020), 105029. [5] A. Zhokh, P. Strizhak, Macroscale modeling the methanol anomalous transport in the porous pellet using the time-fractional diffusion and fractional Brownian motion:A model comparison, Commun. Nonlinear Sci. Numer. Simul., 79(2019), 104922. [6] L. Li, D. Li, Exact solutions and numerical study of time fractional Burgers' equations, Appl. Math. Lett., 100(2020), 106011. [7] A. Jannelli, M. Ruggieri, M. P. Speciale, Analytical and numerical solutions of time and space fractional advection-diffusion-reaction equation, Commun. Nonlinear Sci. Numer. Simul., 70(2019), 89-101. [8] W. Malesza, M. Macias, D. Sierociuk, Analytical solution of fractional variable order differential equations, J. Comput. Appl. Math., 348(2019), 214-236. [9] J. Zhang, F. Liu, Z. Lin, V. Anh, Analytical and numerical solutions of a multi-term time-fractional Burgers' fluid model, Appl. Math. Comput., 356(2019), 1-12. [10] X. Ding, Y. Jiang, Analytical solutions for multi-term time-space coupling fractional delay partial differential equations with mixed boundary conditions, Commun. Nonlinear Sci. Numer. Simul., 65(2018), 231-247. [11] M. Hussain, S. Haq, Weighted meshless spectral method for the solutions of multi-term time fractional advection-diffusion problems arising in heat and mass transfer, Int. J. Heat. Mass. Tran., 129(2019), 1305-1316. [12] R. Zheng, F. Liu, X. Jiang, A legendre spectral method on graded meshes for the two-dimensional multi-term time-fractional diffusion equation with non-smooth solutions, Appl. Math. Lett., 104(2020), 106247. [13] Y. Zhao, Y. Zhang, F. Liu, I. Turner, Y. Tang, V. Anh, Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations, Comput. Math. Appl., 73(2017), 1087-1099. [14] B. Jin, R. Lazarov, Y. Liu, Z. Zhou, The Galerkin finite element method for a multi-term timefractional diffusion equation, J. Comput. Phys., 281(2015), 825-843. [15] L. Qiao, D. Xu, Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equations, Int. J. Comput. Math., 95(2018), 1478-1493. [16] Y. Wang, X. Wen, A compact exponential difference method for multi-term time-fractional convection-reaction-diffusion problems with non-smooth solutions, Appl. Math. Comput., 381(2020), 125316. [17] L. Wei, Stability and convergence of a fully discrete local discontinuous Galerkin method for multi-term time fractional diffusion equations, Numer. Algorithms, 76(2017), 695-707. [18] A.S.V.R. Kanth, N. Garg, An implicit numerical scheme for a class of multi-term time-fractional diffusion equation, Eur. Phys. J. Plus., 134(2019). http://dx.doi.org/10.1140/epjp/i2019-12696-8. [19] L. Zhao, F. Liu, V. Anh, Numerical methods for the two-dimensional multi-term time-fractional diffusion equations, Comput. Math. Appl., 74(2017), 2253-2268. [20] Z. Fu, L. Yang, H. Zhu, W. Xu, A semi-analytical collocation Trefftz scheme for solving multi-term time fractional diffusion-wave equations, Eng. Anal. Bound. Elem., 98(2019), 137-146. [21] H. Sun, X. Zhao, Z. Sun, The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation, J. Sci. Comput., 78(2019), 467- 498. [22] H. Liu, S. Lü, Gauss-Lobatto-Legendre-Birkhoff pseudospectral approximations for the multiterm time fractional diffusion-wave equation with Neumann boundary conditions, Numer. Methods Partial Differential Equations, 34(2018), 2217-2236. [23] M.H. Heydari, Z. Avazzadeh, M. F. Haromi, A wavelet approach for solving multi-term variableorder time fractional diffusion-wave equation, Appl. Math. Comput., 341(2019), 215-228. [24] P. Lyu, Y. Liang, Z. Wang, A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation, Appl. Numer. Math., 151(2020), 448-471. [25] Z. Shi, Y. Zhao, F. Liu, F. Wang, Y. Tang, Nonconforming quasi-Wilson finite element method for 2D multi-term time fractional diffusion-wave equation on regular and anisotropic meshes, Appl. Math. Comput., 338(2018), 290-304. [26] Y. Zhao, F. Wang, X. Hu, Z. Shi, Y. Tang, Anisotropic linear triangle finite element approximation for multi-term time-fractional mixed diffusion and diffusion-wave equations with variable coefficient on 2D bounded domain, Comput. Math. Appl., 78(2019), 1705-1719. [27] S. Shen, F. Liu, V. Anh, The analytical solution and numerical solutions for a two-dimensional multi-term time fractional diffusion and diffusion-wave equation, J. Comput. Appl. Math., 345(2019), 515-534. [28] Z. Liu, F. Liu, F. Zeng, An alternating direction implicit spectral method for solving two dimensional multi-term time fractional mixed diffusion and diffusion-wave equations, Appl. Numer. Math., 136(2019), 139-151. [29] Y. Liu, H. Sun, X. Yin, L. Feng, Fully discrete spectral method for solving a novel multi-term time-fractional mixed diffusion and diffusion-wave equation, Z. Angew. Math. Phys., 71(2020), http://dx.doi.org/10.1007/s00033-019-1244-6. [30] H. Chen, S. Lü, W. Chen, A unified numerical scheme for the multi-term time fractional diffusion and diffusion-wave equations with variable coefficients, J. Comput. Appl. Math., 330(2018), 380- 397. [31] Y. Zhang, Y. Zhao, F. Wang, Y. Tang, High-accuracy finite element method for 2D time fractional diffusion-wave equation on anisotropic meshes, Int. J. Comput. Math., 95(2018), 218-230. [32] F. Liu, P. Zhuang, Q. Liu, Numerical Methods of Fractional Partial Differential Equations and Applications, Science Press, Beijing, 2015. [33] C. Li, L. Zheng, Y. Zhang, L. Ma, X. Zhang, Helical flows of a heated generalized Oldroyd-B fluid subject to a time-dependent shear stress in porous medium, Commun. Nonlinear Sci. Numer. Simluat., 17(2012), 5026-5041. [34] M.B. Riaz, M.A. Imran, K. Shabbir, Analytic solutions of Oldroyd-B fluid with fractional derivatives in a circular duct that applies a constant couple, Alex. Eng. J., 55(2016), 3267-3275. [35] L. Feng, F. Liu, I. Turner, L. Zheng, Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid, Fract. Calc. Appl. Anal., 21(2018), 1073-1103. [36] Y. Liu, X. Yin, L. Feng, H. Sun, Finite difference scheme for simulating a generalized twodimensional multi-term time fractional non-Newtonian fluid model, Adv. Difference Equ., 2018(2018), 1-16. [37] Y. Zhang, J. Jiang, Y. Bai, MHD flow and heat transfer analysis of fractional Oldroyd-B nanofluid between two coaxial cylinders, Comput. Math. Appl., 78(2019), 3408-3421. [38] L. Feng, F. Liu, I. Turner, Finite difference/finite element method for a novel 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains, Commun. Nonlinear Sci. Numer. Simul., 70(2019), 354-371. [39] H. Zhang, X. Yang, Superconvergence analysis of nonconforming finite element method for timefractional nonlinear parabolic equations on anisotropic meshes, Comput. Math. Appl., 77(2019), 2707-2724. [40] W. Huang, L. Kamenski, J. Lang, Conditioning of implicit Runge-Kutta integration for finite element approximation of linear diffusion equations on anisotropic meshes, J. Comput. Appl. Math., 387(2019), 112497. [41] Y. Wei, S. Lü, H. Chen, Y. Zhao, F. Wang, Convergence analysis of the anisotropic FEM for 2D time fractional variable coefficient diffusion equations on graded meshes, Appl. Math. Lett., 111(2021), 106604. [42] J. Wang, Superconvergence analysis of an energy stable scheme for nonlinear reaction-diffusion equation with BDF mixed FEM, Appl. Numer. Math., 153(2020), 457-472. [43] M. Li, D. Shi, L. Pei, Convergence and superconvergence analysis of finite element methods for the time fractional diffusion equation, Appl. Numer. Math., 151(2020), 141-160. [44] Y. Du, H. Wu, Z. Zhang, Superconvergence analysis of linear FEM based on polynomial preserving recovery for Helmholtz equation with high wave number, J. Comput. Appl. Math., 372(2020), 112731. [45] Q. Lin, L. Tobiska, A. Zhou, Superconvergence and extrapolation of non-conforming low order finite elements applied to the Possion equation, IMA J. Numer. Anal., 25(2005), 160-181. [46] D. Shi, S. Mao, S. Chen, An anisotropic nonconforming finite element with some superconvergence results, J. Comput. Math., 23(2005), 261-274. [47] Z. Sun, The Method of Order Reduction and its Application to the Numerical Solutions of Partial Differential Equations, Science Press, Beijing, 2009. [48] Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56(2006), 193-209. [49] D. Shi, Y. Zhang, High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equations, Appl. Math. Comput., 218(2011), 3176-3186. |
[1] | Yanping Chen, Qiling Gu, Qingfeng Li, Yunqing Huang. A TWO-GRID FINITE ELEMENT APPROXIMATION FOR NONLINEAR TIME FRACTIONAL TWO-TERM MIXED SUB-DIFFUSION AND DIFFUSION WAVE EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(6): 936-954. |
[2] | Dongyang Shi, Chao Xu. AN ANISOTROPIC LOCKING-FREE NONCONFORMING TRIANGULAR FINITE ELEMENT METHOD FOR PLANAR LINEAR ELASTICITY PROBLEM [J]. Journal of Computational Mathematics, 2012, 30(2): 124-138. |
[3] | Qingshan Li, Huixia Sun, Shaochun Chen . Convergence of a Mixed Finite Element for the Stokes Problem onAnisotropic Meshes [J]. Journal of Computational Mathematics, 2008, 26(5): 740-755. |
[4] | Shi-peng Mao,Shao-chun Chen. CONVERGENCE ANALYSIS OF MORLEY ELEMENT ON ANISOTROPIC MESHES [J]. Journal of Computational Mathematics, 2006, 24(2): 169-180. |
[5] | Dong-yang Shi, Shi-peng Mao, Shao-chun Chen . An Anisotropic Nonconforming Finite Element with Some Superconvergence Results [J]. Journal of Computational Mathematics, 2005, 23(3): 261-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||