Previous Articles    

THEORETICAL ANALYSIS OF THE REPRODUCING KERNEL GRADIENT SMOOTHING INTEGRATION TECHNIQUE IN GALERKIN MESHLESS METHODS

Xiaolin Li   

  1. School of Mathematical Sciences, Chongqing Normal University, Chongqing 400047, China
  • Received:2021-12-20 Revised:2022-01-12 Published:2023-03-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (Grant No. 11971085) and the Natural Science Foundation of Chongqing (Grant No. cstc2021jcyj-jqX0011).

Xiaolin Li. THEORETICAL ANALYSIS OF THE REPRODUCING KERNEL GRADIENT SMOOTHING INTEGRATION TECHNIQUE IN GALERKIN MESHLESS METHODS[J]. Journal of Computational Mathematics, 2023, 41(3): 502-525.

Numerical integration poses greater challenges in Galerkin meshless methods than finite element methods owing to the non-polynomial feature of meshless shape functions. The reproducing kernel gradient smoothing integration (RKGSI) is one of the optimal numerical integration techniques in Galerkin meshless methods with minimum integration points. In this paper, properties, quadrature rules and the effect of the RKGSI on meshless methods are analyzed. The existence, uniqueness and error estimates of the solution of Galerkin meshless methods under numerical integration with the RKGSI are established. A procedure on how to choose quadrature rules to recover the optimal convergence rate is presented.

CLC Number: 

[1] T. Belytschko, Y.Y. Lu and L. Gu, Element-free Galerkin methods, Int. J. Numer. Methods Eng., 37(1994), 229-256.
[2] S. Li and W.K. Liu, Meshfree Particle Methods, Springer, Berlin, 2004.
[3] Y.M. Cheng, Meshless Methods, Science Press, Beijing, 2015.
[4] P. Assari, F. Asadi-Mehregan and M. Dehghan, Local Gaussian-collocation scheme to approximate the solution of nonlinear fractional differential equations using Volterra integral equations, J. Comput. Math., 39(2021), 261-282.
[5] G.X. Lv and L.J. Shen, Theoretical analyses on discrete formulae of directional differentials in the finite point method, J. Comput. Math., 40(2022), 1-25.
[6] J. Dolbow and T. Belytschko, Numerical integration of the Galerkin weak form in meshfree methods, Comput. Mech., 23(1999), 219-230.
[7] I. Babuˇska, U. Banerjee, J.E. Osborn and Q.L. Li, Quadrature for meshless methods, Int. J. Numer. Methods Eng., 76(2008), 1434-1470.
[8] J.S. Chen, C.T. Wu, S. Yoon and Y. You, A stabilized conforming nodal integration for Galerkin meshfree methods, Int. J. Numer. Methods Eng., 50(2001), 435-466.
[9] D.D. Wang and J.C. Wu, An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature, Comput. Methods Appl. Mech. Eng., 349(2019), 628-672.
[10] J.C. Wu and D.D. Wang, An accuracy analysis of Galerkin meshfree methods accounting for numerical integration, Comput. Methods Appl. Mech. Eng., 375(2021), 113631.
[11] Q.L. Duan, X.K. Li, H.W. Zhang and T. Belytschko, Second-order accurate derivatives and integration schemes for meshfree methods, Int. J. Numer. Methods Eng., 92(2012), 399-424.
[12] D.D. Wang and J.C. Wu, An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods, Comput. Methods Appl. Mech. Eng., 298(2016), 485-519.
[13] I. Babuˇska, U. Banerjee, J.E. Osborn and Q.H. Zhang, Effect of numerical integration on meshless methods, Comput. Methods Appl. Mech. Eng., 198(2009), 2886-2897.
[14] Q.H. Zhang and U. Banerjee, Numerical integration in Galerkin meshless methods, applied to elliptic Neumann problem with non-constant coefficients, Adv. Comput. Math., 37(2012), 453- 492.
[15] W.M. Han and X.P. Meng, Error analysis of the reproducing kernel particle method, Comput. Methods Appl. Mech. Eng., 190(2001), 6157-6181.
[16] Y.Q. Huang, W. Li and F. Su, Optimal error estimates of the partition of unity method with local polynomial approximation spaces, J. Comput. Math., 24(2006), 365-372.
[17] X.L. Li and J.L. Zhu, Galerkin boundary node method for exterior Neumann problems, J. Comput. Math., 29(2011), 243-260.
[18] D. Mirzaei, Analysis of moving least squares approximation revisited, J. Comput. Appl. Math., 282(2015), 237-250.
[19] X.L. Li, Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces, Appl. Numer. Math., 99(2016), 77-97.
[20] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[21] L.B. Zhang, T. Cui and H. Liu, A set of symmetric quadrature rules on triangles, J. Comput. Math., 27(2009), 89-96.
[22] Y. Cao, L.Q. Yao, M.Q. Jiang and Q. Niu, A relaxed HSS preconditioner for saddle point problems from meshfree discretization, J. Comput. Math., 31(2013), 398-421.
[23] X.L. Li and S.L. Li, On the stability of the moving least squares approximation and the elementfree Galerkin method, Comput. Math. Appl., 72(2016), 1515-1531.
[24] P. Lancaster and K. Salkauskas, Surface generated by moving least squares methods, Math. Comput., 37(1981), 141-158.
[25] W.K. Liu, S. Jun and Y.F. Zhang, Reproducing kernel particle methods, Int. J. Numer. Methods Fluid., 20(1995), 1081-1106.
[26] S.C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, SpringerVerlag, New York, 1996.
[27] P.J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1984.
[28] M.R. Eslahchi, M. Masjed-Jamei and E. Babolian, On numerical improvement of Gauss-Lobatto quadrature rules, Appl. Math. Comput., 164(2005), 707-717.
[29] G.R. Cowper, Gaussian quadrature formulas for triangles, Int. J. Numer. Methods Eng., 7(1973), 405-408.
[1] Tianliang Hou, Chunmei Liu, Chunlei Dai, Luoping Chen, Yin Yang. TWO-GRID ALGORITHM OF H1-GALERKIN MIXED FINITE ELEMENT METHODS FOR SEMILINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 667-685.
[2] Yabing Sun, Jie Yang, Weidong Zhao, Tao Zhou. AN EXPLICIT MULTISTEP SCHEME FOR MEAN-FIELD FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(4): 517-540.
[3] Xiaoli Li, Yanping Chen, Chuanjun Chen. AN IMPROVED TWO-GRID TECHNIQUE FOR THE NONLINEAR TIME-FRACTIONAL PARABOLIC EQUATION BASED ON THE BLOCK-CENTERED FINITE DIFFERENCE METHOD [J]. Journal of Computational Mathematics, 2022, 40(3): 453-471.
[4] Ram Manohar, Rajen Kumar Sinha. ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 147-176.
[5] Huaijun Yang, Dongyang Shi. UNCONDITIONALLY OPTIMAL ERROR ESTIMATES OF THE BILINEAR-CONSTANT SCHEME FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(1): 127-146.
[6] Xiaoliang Song, Bo Chen, Bo Yu. ERROR ESTIMATES FOR SPARSE OPTIMAL CONTROL PROBLEMS BY PIECEWISE LINEAR FINITE ELEMENT APPROXIMATION [J]. Journal of Computational Mathematics, 2021, 39(3): 471-492.
[7] Xiaocui Li, Xu You. MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 130-146.
[8] Michael Holst, Yuwen Li, Adam Mihalik, Ryan Szypowski. CONVERGENCE AND OPTIMALITY OF ADAPTIVE MIXED METHODS FOR POISSON'S EQUATION IN THE FEEC FRAMEWORK [J]. Journal of Computational Mathematics, 2020, 38(5): 748-767.
[9] Li Cai, Ye Sun, Feifei Jing, Yiqiang Li, Xiaoqin Shen, Yufeng Nie. A FULLY DISCRETE IMPLICIT-EXPLICIT FINITE ELEMENT METHOD FOR SOLVING THE FITZHUGH-NAGUMO MODEL [J]. Journal of Computational Mathematics, 2020, 38(3): 469-486.
[10] Huoyuan Duan, Roger C. E. Tan. ERROR ANALYSIS OF A STABILIZED FINITE ELEMENT METHOD FOR THE GENERALIZED STOKES PROBLEM [J]. Journal of Computational Mathematics, 2020, 38(2): 254-290.
[11] Nikolaus von Daniels, Michael Hinze. VARIATIONAL DISCRETIZATION OF A CONTROL-CONSTRAINED PARABOLIC BANG-BANG OPTIMAL CONTROL PROBLEM [J]. Journal of Computational Mathematics, 2020, 38(1): 14-40.
[12] Hai Bi, Yidu Yang, Yuanyuan Yu, Jiayu Han. NEW ERROR ESTIMATES FOR LINEAR TRIANGLE FINITE ELEMENTS IN THE STEKLOV EIGENVALUE PROBLEM [J]. Journal of Computational Mathematics, 2018, 36(5): 682-692.
[13] Fei Wang, Shuo Zhang. OPTIMAL QUADRATIC NITSCHE EXTENDED FINITE ELEMENT METHOD FOR INTERFACE PROBLEM OF DIFFUSION EQUATION [J]. Journal of Computational Mathematics, 2018, 36(5): 693-717.
[14] Xiaoli Li, Hongxing Rui. BLOCK-CENTERED FINITE DIFFERENCE METHODS FOR NON-FICKIAN FLOW IN POROUS MEDIA [J]. Journal of Computational Mathematics, 2018, 36(4): 492-516.
[15] Rikard Anton, David Cohen. EXPONENTIAL INTEGRATORS FOR STOCHASTIC SCHRÖDINGER EQUATIONS DRIVEN BY ITÔ NOISE [J]. Journal of Computational Mathematics, 2018, 36(2): 276-309.
Viewed
Full text


Abstract