Xiaolin Li
[1] T. Belytschko, Y.Y. Lu and L. Gu, Element-free Galerkin methods, Int. J. Numer. Methods Eng., 37(1994), 229-256. [2] S. Li and W.K. Liu, Meshfree Particle Methods, Springer, Berlin, 2004. [3] Y.M. Cheng, Meshless Methods, Science Press, Beijing, 2015. [4] P. Assari, F. Asadi-Mehregan and M. Dehghan, Local Gaussian-collocation scheme to approximate the solution of nonlinear fractional differential equations using Volterra integral equations, J. Comput. Math., 39(2021), 261-282. [5] G.X. Lv and L.J. Shen, Theoretical analyses on discrete formulae of directional differentials in the finite point method, J. Comput. Math., 40(2022), 1-25. [6] J. Dolbow and T. Belytschko, Numerical integration of the Galerkin weak form in meshfree methods, Comput. Mech., 23(1999), 219-230. [7] I. Babuˇska, U. Banerjee, J.E. Osborn and Q.L. Li, Quadrature for meshless methods, Int. J. Numer. Methods Eng., 76(2008), 1434-1470. [8] J.S. Chen, C.T. Wu, S. Yoon and Y. You, A stabilized conforming nodal integration for Galerkin meshfree methods, Int. J. Numer. Methods Eng., 50(2001), 435-466. [9] D.D. Wang and J.C. Wu, An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature, Comput. Methods Appl. Mech. Eng., 349(2019), 628-672. [10] J.C. Wu and D.D. Wang, An accuracy analysis of Galerkin meshfree methods accounting for numerical integration, Comput. Methods Appl. Mech. Eng., 375(2021), 113631. [11] Q.L. Duan, X.K. Li, H.W. Zhang and T. Belytschko, Second-order accurate derivatives and integration schemes for meshfree methods, Int. J. Numer. Methods Eng., 92(2012), 399-424. [12] D.D. Wang and J.C. Wu, An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods, Comput. Methods Appl. Mech. Eng., 298(2016), 485-519. [13] I. Babuˇska, U. Banerjee, J.E. Osborn and Q.H. Zhang, Effect of numerical integration on meshless methods, Comput. Methods Appl. Mech. Eng., 198(2009), 2886-2897. [14] Q.H. Zhang and U. Banerjee, Numerical integration in Galerkin meshless methods, applied to elliptic Neumann problem with non-constant coefficients, Adv. Comput. Math., 37(2012), 453- 492. [15] W.M. Han and X.P. Meng, Error analysis of the reproducing kernel particle method, Comput. Methods Appl. Mech. Eng., 190(2001), 6157-6181. [16] Y.Q. Huang, W. Li and F. Su, Optimal error estimates of the partition of unity method with local polynomial approximation spaces, J. Comput. Math., 24(2006), 365-372. [17] X.L. Li and J.L. Zhu, Galerkin boundary node method for exterior Neumann problems, J. Comput. Math., 29(2011), 243-260. [18] D. Mirzaei, Analysis of moving least squares approximation revisited, J. Comput. Appl. Math., 282(2015), 237-250. [19] X.L. Li, Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces, Appl. Numer. Math., 99(2016), 77-97. [20] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. [21] L.B. Zhang, T. Cui and H. Liu, A set of symmetric quadrature rules on triangles, J. Comput. Math., 27(2009), 89-96. [22] Y. Cao, L.Q. Yao, M.Q. Jiang and Q. Niu, A relaxed HSS preconditioner for saddle point problems from meshfree discretization, J. Comput. Math., 31(2013), 398-421. [23] X.L. Li and S.L. Li, On the stability of the moving least squares approximation and the elementfree Galerkin method, Comput. Math. Appl., 72(2016), 1515-1531. [24] P. Lancaster and K. Salkauskas, Surface generated by moving least squares methods, Math. Comput., 37(1981), 141-158. [25] W.K. Liu, S. Jun and Y.F. Zhang, Reproducing kernel particle methods, Int. J. Numer. Methods Fluid., 20(1995), 1081-1106. [26] S.C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, SpringerVerlag, New York, 1996. [27] P.J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1984. [28] M.R. Eslahchi, M. Masjed-Jamei and E. Babolian, On numerical improvement of Gauss-Lobatto quadrature rules, Appl. Math. Comput., 164(2005), 707-717. [29] G.R. Cowper, Gaussian quadrature formulas for triangles, Int. J. Numer. Methods Eng., 7(1973), 405-408. |
[1] | Tianliang Hou, Chunmei Liu, Chunlei Dai, Luoping Chen, Yin Yang. TWO-GRID ALGORITHM OF H1-GALERKIN MIXED FINITE ELEMENT METHODS FOR SEMILINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 667-685. |
[2] | Yabing Sun, Jie Yang, Weidong Zhao, Tao Zhou. AN EXPLICIT MULTISTEP SCHEME FOR MEAN-FIELD FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(4): 517-540. |
[3] | Xiaoli Li, Yanping Chen, Chuanjun Chen. AN IMPROVED TWO-GRID TECHNIQUE FOR THE NONLINEAR TIME-FRACTIONAL PARABOLIC EQUATION BASED ON THE BLOCK-CENTERED FINITE DIFFERENCE METHOD [J]. Journal of Computational Mathematics, 2022, 40(3): 453-471. |
[4] | Ram Manohar, Rajen Kumar Sinha. ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 147-176. |
[5] | Huaijun Yang, Dongyang Shi. UNCONDITIONALLY OPTIMAL ERROR ESTIMATES OF THE BILINEAR-CONSTANT SCHEME FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(1): 127-146. |
[6] | Xiaoliang Song, Bo Chen, Bo Yu. ERROR ESTIMATES FOR SPARSE OPTIMAL CONTROL PROBLEMS BY PIECEWISE LINEAR FINITE ELEMENT APPROXIMATION [J]. Journal of Computational Mathematics, 2021, 39(3): 471-492. |
[7] | Xiaocui Li, Xu You. MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 130-146. |
[8] | Michael Holst, Yuwen Li, Adam Mihalik, Ryan Szypowski. CONVERGENCE AND OPTIMALITY OF ADAPTIVE MIXED METHODS FOR POISSON'S EQUATION IN THE FEEC FRAMEWORK [J]. Journal of Computational Mathematics, 2020, 38(5): 748-767. |
[9] | Li Cai, Ye Sun, Feifei Jing, Yiqiang Li, Xiaoqin Shen, Yufeng Nie. A FULLY DISCRETE IMPLICIT-EXPLICIT FINITE ELEMENT METHOD FOR SOLVING THE FITZHUGH-NAGUMO MODEL [J]. Journal of Computational Mathematics, 2020, 38(3): 469-486. |
[10] | Huoyuan Duan, Roger C. E. Tan. ERROR ANALYSIS OF A STABILIZED FINITE ELEMENT METHOD FOR THE GENERALIZED STOKES PROBLEM [J]. Journal of Computational Mathematics, 2020, 38(2): 254-290. |
[11] | Nikolaus von Daniels, Michael Hinze. VARIATIONAL DISCRETIZATION OF A CONTROL-CONSTRAINED PARABOLIC BANG-BANG OPTIMAL CONTROL PROBLEM [J]. Journal of Computational Mathematics, 2020, 38(1): 14-40. |
[12] | Hai Bi, Yidu Yang, Yuanyuan Yu, Jiayu Han. NEW ERROR ESTIMATES FOR LINEAR TRIANGLE FINITE ELEMENTS IN THE STEKLOV EIGENVALUE PROBLEM [J]. Journal of Computational Mathematics, 2018, 36(5): 682-692. |
[13] | Fei Wang, Shuo Zhang. OPTIMAL QUADRATIC NITSCHE EXTENDED FINITE ELEMENT METHOD FOR INTERFACE PROBLEM OF DIFFUSION EQUATION [J]. Journal of Computational Mathematics, 2018, 36(5): 693-717. |
[14] | Xiaoli Li, Hongxing Rui. BLOCK-CENTERED FINITE DIFFERENCE METHODS FOR NON-FICKIAN FLOW IN POROUS MEDIA [J]. Journal of Computational Mathematics, 2018, 36(4): 492-516. |
[15] | Rikard Anton, David Cohen. EXPONENTIAL INTEGRATORS FOR STOCHASTIC SCHRÖDINGER EQUATIONS DRIVEN BY ITÔ NOISE [J]. Journal of Computational Mathematics, 2018, 36(2): 276-309. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||