Lexing Ying
[1] K.S. Alexander, The spectral gap of the 2-D stochastic Ising model with nearly single-spin boundary conditions, J. Stat. Phys., 104:1(2001), 59-87. [2] K.S. Alexander and N. Yoshida, The spectral gap of the 2-D stochastic Ising model with mixed boundary conditions, J. Stat. Phys., 104:1(2001), 89-109. [3] R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Elsevier, 2016. [4] S. Chatterjee and P. Diaconis, Speeding up Markov chains with deterministic jumps, Probab. Theory Related Fields, 178:3(2020), 1193-1214. [5] R.G. Edwards and A.D. Sokal, Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm, Phys. Rev. D, 38:6(1988), 2009. [6] R. Gheissari and E. Lubetzky, The effect of boundary conditions on mixing of 2D Potts models at discontinuous phase transitions, Electron. J. Probab., 23(2018), 1-30. [7] E. Ising, Beitrag zur Theorie des Ferro-und Paramagnetismus, PhD Thesis, University of Hamburg, 1924. [8] J.S. Liu, Monte Carlo Strategies in Scientific Computing, Springer, 2001. [9] R.M. Neal, Sampling from multimodal distributions using tempered transitions, Stat. Comput., 6:4(1996), 353-366. [10] R.M. Neal, Annealed importance sampling, Stat. Comput., 11:2(2001), 125-139. [11] H. Nishimori and G. Ortiz, Elements of Phase Transitions and Critical Phenomena, Oxford University Press, 2010. [12] L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev., 65:3-4(1944), 117-149. [13] R.H. Swendsen and J.S. Wang, Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett., 58:2(1987), 86-88. [14] L. Ying, Double Flip Acceleration for Ising Models with Mixed Boundary Conditions, Preprint, (2022). |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||