Qianqian Chu1,2, Guanghui Jin1, Jihong Shen2, Yuanfeng Jin1
Qianqian Chu, Guanghui Jin, Jihong Shen, Yuanfeng Jin. NUMERICAL ANALYSIS OF CRANK-NICOLSON SCHEME FOR THE ALLEN-CAHN EQUATION[J]. Journal of Computational Mathematics, 2021, 39(5): 655-665.
[1] G.D. Akrivis, Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal., 13(1993), 115-124. [2] S.M. Allen, J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall, 27(1979), 1085-1095. [3] F.E. Browder, Existence and uniqueness theorems for solutions of nonlinear bourdary value problems. Proc. Sympos. Appl. Math., 17(1965), 24-49. [4] D.S. Cohen, J.D. Murray, A generalized diffusion model for growth and dispersal in a population. J. Math. Biol., 12(1981), 237-249. [5] L.C. Evans, H.M. Soner, Souganidis, P.E. Phase transitions and generalized motion by mean curvature. Commun. Pure. Appl. Math., 45(1992), 1097-1123. [6] X. Feng, T. Tang, J. Yang, Stabilized Crank-Nicolson scheme for phase field models. East Asian J. Appl. Math., 3(2013), 59-80. [7] T.L. Hou, T. Tang, J. Yang, Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput., 72(2017), 1214-1231. [8] J. Kim, Phase-field modes for multi-component fluid flows. Commun. Comput. Phys., 12(2012), 613-661. [9] G.D. Smith, Numerical Solution of Partial Differential Equations:Finite Difference Methods, 3rd ed. Oxford University Press, Oxford, 1996. [10] Z.Z. Sun, Finite Difference Methods for Nonlinear Evolutionary Differential Equations. Science Press, Beijing, 2018. [11] Z.Z. Sun, Numerical Solutions of Partial Differential Equations, 2rd ed. Science Press, Beijing, 2012 [12] T. Tang, Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle. J. Comput. Math., 34:5(2016), 451-461. [13] J.Q. Zhang, T.L. Hou, Discrete maximum principle and energy stability of finite difference methods for one-dimensional Allen-Cahn equations. Journal of Beihua University, 17:2(2016), 159-164. [14] N. Zheng, S.Y. Zhai, Z.F. Weng, Two efficient numerical schemes for the Allen-Cahn equation. Adv. in Appl. Math., 6:3(2017), 283-295. |
[1] | Baiying Dong, Xiufeng Feng, Zhilin Li. AN L∞ SECOND ORDER CARTESIAN METHOD FOR 3D ANISOTROPIC INTERFACE PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(6): 882-912. |
[2] | Darko Volkov. A STOCHASTIC ALGORITHM FOR FAULT INVERSE PROBLEMS IN ELASTIC HALF SPACE WITH PROOF OF CONVERGENCE [J]. Journal of Computational Mathematics, 2022, 40(6): 955-976. |
[3] | Yanping Chen, Qiling Gu, Qingfeng Li, Yunqing Huang. A TWO-GRID FINITE ELEMENT APPROXIMATION FOR NONLINEAR TIME FRACTIONAL TWO-TERM MIXED SUB-DIFFUSION AND DIFFUSION WAVE EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(6): 936-954. |
[4] | Mingming Zhao, Yongfeng Li, Zaiwen Wen. A STOCHASTIC TRUST-REGION FRAMEWORK FOR POLICY OPTIMIZATION [J]. Journal of Computational Mathematics, 2022, 40(6): 1004-1030. |
[5] | Rong Zhang, Hongqi Yang. A DISCRETIZING LEVENBERG-MARQUARDT SCHEME FOR SOLVING NONLIEAR ILL-POSED INTEGRAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 686-710. |
[6] | Wei Zhang. STRONG CONVERGENCE OF THE EULER-MARUYAMA METHOD FOR A CLASS OF STOCHASTIC VOLTERRA INTEGRAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(4): 607-623. |
[7] | Yaolin Jiang, Zhen Miao, Yi Lu. WAVEFORM RELAXATION METHODS FOR LIE-GROUP EQUATIONS* [J]. Journal of Computational Mathematics, 2022, 40(4): 649-666. |
[8] | Xiaonian Long, Qianqian Ding. A SECOND ORDER UNCONDITIONALLY CONVERGENT FINITE ELEMENT METHOD FOR THE THERMAL EQUATION WITH JOULE HEATING PROBLEM [J]. Journal of Computational Mathematics, 2022, 40(3): 354-372. |
[9] | Siyuan Qi, Guangqiang Lan. STRONG CONVERGENCE OF THE EULER-MARUYAMA METHOD FOR NONLINEAR STOCHASTIC VOLTERRA INTEGRAL EQUATIONS WITH TIME-DEPENDENT DELAY [J]. Journal of Computational Mathematics, 2022, 40(3): 437-452. |
[10] | Xiaoyu Wang, Ya-xiang Yuan. STOCHASTIC TRUST-REGION METHODS WITH TRUST-REGION RADIUS DEPENDING ON PROBABILISTIC MODELS [J]. Journal of Computational Mathematics, 2022, 40(2): 294-334. |
[11] | Mohammed Harunor Rashid. METRICALLY REGULAR MAPPING AND ITS UTILIZATION TO CONVERGENCE ANALYSIS OF A RESTRICTED INEXACT NEWTON-TYPE METHOD [J]. Journal of Computational Mathematics, 2022, 40(1): 44-69. |
[12] | Yang Chen, Chunlin Wu. DATA-DRIVEN TIGHT FRAME CONSTRUCTION FOR IMPULSIVE NOISE REMOVAL [J]. Journal of Computational Mathematics, 2022, 40(1): 89-107. |
[13] | Lu Zhang, Qifeng Zhang, Hai-wei Sun. A FAST COMPACT DIFFERENCE METHOD FOR TWO-DIMENSIONAL NONLINEAR SPACE-FRACTIONAL COMPLEX GINZBURG-LANDAU EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(5): 708-732. |
[14] | Xia Cui, Guangwei Yuan, Fei Zhao. ANALYSIS ON A NUMERICAL SCHEME WITH SECOND-ORDER TIME ACCURACY FOR NONLINEAR DIFFUSION EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(5): 777-800. |
[15] | Yong Liu, Chi-Wang Shu, Mengping Zhang. SUB-OPTIMAL CONVERGENCE OF DISCONTINUOUS GALERKIN METHODS WITH CENTRAL FLUXES FOR LINEAR HYPERBOLIC EQUATIONS WITH EVEN DEGREE POLYNOMIAL APPROXIMATIONS [J]. Journal of Computational Mathematics, 2021, 39(4): 518-537. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||