Previous Articles Next Articles
Jiajie Li, Shengfeng Zhu
Jiajie Li, Shengfeng Zhu. ON DISTRIBUTED H1 SHAPE GRADIENT FLOWS IN OPTIMAL SHAPE DESIGN OF STOKES FLOWS: CONVERGENCE ANALYSIS AND NUMERICAL APPLICATIONS[J]. Journal of Computational Mathematics, 2022, 40(2): 231-257.
[1] G. Allaire, F. Jouve, A. Toader, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194(2004), 363-393. [2] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New York, 1991. [3] E. Burman, D. Elfverson, P. Hansbo, M. G. Larson, and K. Larsson, Shape optimization using the cut finite element method, Comput. Methods Appl. Mech. Engrg., 328(2018), 242-261. [4] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. [5] F. de Gournay, Velocity extension for the level-set method and multiple eigenvalues in shape optimization, SIAM J. Control Optim., 45(2006), 343-367. [6] M.C. Delfour and J.P. Zolésio, Shapes and Geometries:Metrics, Analysis, Differential Calculus, and Optimization, 2nd ed., SIAM, Philadelphia, 2011. [7] X. Duan, Y. Ma, and R. Zhang, Shape-topology optimization for NavierCStokes problem using variational level set method, J. Comput. Appl. Math., 222(2008), 487-499. [8] A. Ern and J.L. Guermond, Theory and Practice of Finite Elements, Springer, Berlin, 2004. [9] P. Gangl, U. Langer, A. Laurain, H. Meftahi, and K. Sturm, Shape optimization of an electric motor subject to nonlinear magnetostatics, SIAM J. Sci. Comput., 37(2015), B1002-B1025. [10] V. Girault, R.H. Nochetto, and L.R. Scott, Maximum-norm stability of the finite element Stokes projection, J. Math. Pures Appl., 84(2005), 279-330. [11] V. Girault, R.H. Nochetto, L.R. Scott, Max-norm estimates for Stokes and NavierCStokes approximations in convex polyhedra, Numer. Math., 131(2015), 771-822. [12] V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations:Theory and Algorithms, Springer-Verlag, Berlin, 1986. [13] F. Hecht, New development in FreeFem++, J. Numer. Math., 20(2012), 251-265. [14] A. Henrot and Y. Privat, What is the optimal shape of a pipe, Arch. Rational Mech. Anal., 196(2010), 281-302. [15] M. Hintermller, A. Laurain, and I. Yousept, Shape sensitivities for an inverse problem in magnetic induction tomography based on the eddy current model, Inverse Problems, 31(2015) 065006, 25. [16] R. Hiptmair, A. Paganini, and S. Sargheini, Comparison of approximate shape gradients, BIT Numer. Math., 55(2015), 459-485. [17] A. Laurain and K. Sturm, Distributed shape derivative via averaged adjoint method and applications, ESAIM Math. Model. Numer. Anal., 50(2016), 1241-1267. [18] J. Li and S. Zhu, Shape identification in Stokes flow with distributed shape gradients, Appl. Math. Lett., 95(2019), 165-171. [19] B. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids, 2nd ed., Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2010. [20] O. Pironneau, On optimum profiles in Stokes flow, J. Fluid Mech., 59(1973), 117-128. [21] A. Quarteroni, A. Manzoni, and C. Vergara, The cardiovascular system:mathematical modelling, numerical algorithms and clinical applications, Acta Numer., 26(2017), 365-590. [22] S. Schmidt, M. Schtte, and A. Walther, Efficient numerical solution of geometric inverse problems involving Maxwell's equations using shape derivatives and automatic code generation, SIAM J. Sci. Comput., 40(2018), B405-B428. [23] V. Schulz, M. Siebenborn, and K. Welker, Structured inverse modeling in parabolic diffusion problems, SIAM J. Control Optim., 53(2015), 3319-3338. [24] J. Soko lowski and J.P. Zolésio, Introduction to Shape Optimization:Shape Sensitivity Analysis, Springer, Heidelberg, 1992. [25] L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Springer, 2007. [26] W. Yan and Y. Ma, Shape reconstruction of an inverse Stokes problem, J. Comput. Appl. Math., 216(2008), 554-562. [27] S. Zhu, Effective shape optimization of Laplace eigenvalue problems using domain expressions of Eulerian derivatives, J. Optim. Theory Appl., 176(2018), 17-34. [28] S. Zhu and Z. Gao, Convergence analysis of mixed finite element approximations to shape gradients in the Stokes equation, Comput. Methods Appl. Mech. Engrg., 343(2019), 127-150. [29] S. Zhu, X. Hu, and Q. Wu, On accuracy of approximate boundary and distributed H1 shape gradient flows for eigenvalue optimization, J. Comput. Appl. Math., 365(2020), 112374 [30] S. Zhu, X. Hu, and Q. Liao, Convergence analysis of Galerkin finite element approximations to shape gradients in eigenvalue optimization, BIT. Numer. Math., 60(2020), 853-878. |
[1] | Baiying Dong, Xiufeng Feng, Zhilin Li. AN L∞ SECOND ORDER CARTESIAN METHOD FOR 3D ANISOTROPIC INTERFACE PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(6): 882-912. |
[2] | Bei Zhang, Jikun Zhao, Minghao Li, Hongru Chen. STABILIZED NONCONFORMING MIXED FINITE ELEMENT METHOD FOR LINEAR ELASTICITY ON RECTANGULAR OR CUBIC MESHES [J]. Journal of Computational Mathematics, 2022, 40(6): 865-881. |
[3] | Yanping Chen, Qiling Gu, Qingfeng Li, Yunqing Huang. A TWO-GRID FINITE ELEMENT APPROXIMATION FOR NONLINEAR TIME FRACTIONAL TWO-TERM MIXED SUB-DIFFUSION AND DIFFUSION WAVE EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(6): 936-954. |
[4] | Tianliang Hou, Chunmei Liu, Chunlei Dai, Luoping Chen, Yin Yang. TWO-GRID ALGORITHM OF H1-GALERKIN MIXED FINITE ELEMENT METHODS FOR SEMILINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 667-685. |
[5] | Kai Wang, Na Wang. ANALYSIS OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR PARABOLIC INTERFACE PROBLEMS WITH NONSMOOTH INITIAL DATA [J]. Journal of Computational Mathematics, 2022, 40(5): 777-793. |
[6] | Linshuang He, Minfu Feng, Qiang Ma. PENALTY-FACTOR-FREE STABILIZED NONCONFORMING FINITE ELEMENTS FOR SOLVING STATIONARY NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 728-755. |
[7] | Huan Liu, Xiangcheng Zheng, Hongfei Fu. ANALYSIS OF A MULTI-TERM VARIABLE-ORDER TIME-FRACTIONAL DIFFUSION EQUATION AND ITS GALERKIN FINITE ELEMENT APPROXIMATION [J]. Journal of Computational Mathematics, 2022, 40(5): 814-834. |
[8] | Hanzhang Hu, Yanping Chen. A CHARACTERISTIC MIXED FINITE ELEMENT TWO-GRID METHOD FOR COMPRESSIBLE MISCIBLE DISPLACEMENT PROBLEM [J]. Journal of Computational Mathematics, 2022, 40(5): 794-813. |
[9] | Abdelhamid Zaghdani, Sayed Sayari, Miled EL Hajji. A NEW HYBRIDIZED MIXED WEAK GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS* [J]. Journal of Computational Mathematics, 2022, 40(4): 499-516. |
[10] | Xinjiang Chen, Yanqiu Wang. A CONFORMING QUADRATIC POLYGONAL ELEMENT AND ITS APPLICATION TO STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(4): 624-648. |
[11] | Xiaonian Long, Qianqian Ding. A SECOND ORDER UNCONDITIONALLY CONVERGENT FINITE ELEMENT METHOD FOR THE THERMAL EQUATION WITH JOULE HEATING PROBLEM [J]. Journal of Computational Mathematics, 2022, 40(3): 354-372. |
[12] | Noelia Bazarra, José R. Fernández, MariCarme Leseduarte, Antonio Magaña, Ramón Quintanilla. NUMERICAL ANALYSIS OF A PROBLEM INVOLVING A VISCOELASTIC BODY WITH DOUBLE POROSITY [J]. Journal of Computational Mathematics, 2022, 40(3): 415-436. |
[13] | Ram Manohar, Rajen Kumar Sinha. ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 147-176. |
[14] | Weijie Huang, Wei Jiang, Yan Wang. A θ-L APPROACH FOR SOLVING SOLID-STATE DEWETTING PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 275-293. |
[15] | Pengzhan Huang, Yinnian He, Ting Li. A FINITE ELEMENT ALGORITHM FOR NEMATIC LIQUID CRYSTAL FLOW BASED ON THE GAUGE-UZAWA METHOD [J]. Journal of Computational Mathematics, 2022, 40(1): 26-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||