Previous Articles     Next Articles

TWO NOVEL CLASSES OF ARBITRARY HIGH-ORDER STRUCTURE-PRESERVING ALGORITHMS FOR CANONICAL HAMILTONIAN SYSTEMS

Yonghui Bo1, Wenjun Cai2, Yushun Wang2   

  1. 1. Department of Mathematics, Anhui Normal University, Wuhu 241000, China;
    2. Jiangsu Key Laboratory for NSLSCS, Jiangsu Collaborative Innovation Center of Biomedial Functional Materials, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
  • Received:2021-03-15 Revised:2021-05-27 Online:2023-05-15 Published:2023-03-14
  • Contact: Yushun Wang, Email:wangyushun@njnu.edu.cn
  • Supported by:
    This work is supported by the National Key Research and Development Project of China (Grant No. 2018YFC1504205), the National Natural Science Foundation of China (Grant No. 11771213, 11971242), the Major Projects of Natural Sciences of University in Jiangsu Province of China (Grant No. 18KJA110003) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Yonghui Bo, Wenjun Cai, Yushun Wang. TWO NOVEL CLASSES OF ARBITRARY HIGH-ORDER STRUCTURE-PRESERVING ALGORITHMS FOR CANONICAL HAMILTONIAN SYSTEMS[J]. Journal of Computational Mathematics, 2023, 41(3): 395-414.

In this paper, we systematically construct two classes of structure-preserving schemes with arbitrary order of accuracy for canonical Hamiltonian systems. The one class is the symplectic scheme, which contains two new families of parameterized symplectic schemes that are derived by basing on the generating function method and the symmetric composition method, respectively. Each member in these schemes is symplectic for any fixed parameter. A more general form of generating functions is introduced, which generalizes the three classical generating functions that are widely used to construct symplectic algorithms. The other class is a novel family of energy and quadratic invariants preserving schemes, which is devised by adjusting the parameter in parameterized symplectic schemes to guarantee energy conservation at each time step. The existence of the solutions of these schemes is verified. Numerical experiments demonstrate the theoretical analysis and conservation of the proposed schemes.

CLC Number: 

[1] P. Betsch and P. Steinmann, Inherently energy conserving time finite elements for classical mechanics, J. Comput. Phys., 160(2000), 88-116.
[2] Y.H. Bo, W.J. Cai, and Y.S. Wang, A general symplectic scheme with three free parameters and its applications, Appl. Math. Lett., 112(2021), 106792.
[3] Y.H. Bo, W.J. Cai, and Y.S. Wang, A note on the generating function method, Adv. Appl. Math. Mech., 13:4(2021), 982-1004.
[4] L. Brugnano, G. Gurioli, and F. Iavernaro, Analysis of energy and quadratic invariant preserving (EQUIP) methods, J. Comput. Appl. Math., 335(2018), 51-73.
[5] L. Brugnano and F. Iavernaro, Line Integral Methods for Conservative Problems, Chapman & Hall/CRC:Boca Raton, FL, USA, 2016.
[6] L. Brugnano, F. Iavernaro, and D. Trigiante, Energy- and quadratic invariants-preserving integrators based upon Gauss collocation formulae, SIAM J. Numer. Anal., 50:6(2012), 2897-2916.
[7] L. Brugnano, F. Iavernaro, and D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral methods), J. Numer. Anal. Ind. Appl. Math., 5:1-2(2010), 17-37.
[8] W.J. Cai, H.C. Li, and Y.S. Wang, Partitioned averaged vector field methods, J. Comput. Phys., 370(2018), 25-42.
[9] P. Chartier, E. Faou, and A. Murua, An algebraic approach to invariant preserving integrators:the case of quadratic and Hamiltonian invariants, Numer. Math., 103(2006), 575-590.
[10] C.C. Chen, J.L. Hong, C. Sim, and K. Sonwu, Energy and quadratic invariants preserving (EQUIP) multi-symplectic methods for Hamiltonian wave equations, J. Comput. Phys., 418(2020), 109599.
[11] G. Cooper, Stability of Runge-Kutta methods for trajectory problems, IMA J. Numer. Anal., 7(1987), 1-13.
[12] R. De Vogelaere, Methods of integration which preserve the contact transformation property of Hamiltonian equations, Tech. Report No 4, Dept. Mathem., Univ. of Notre Dame, Notre Dame, Ind., 1956.
[13] K. Feng, On difference schemes and symplectic geometry, in Proc 1984 Beijing Symp Diff Geometry and Diff Equations, K. Feng (ed.), Science Press, Beijing, 1985, 42-58.
[14] K. Feng and M.Z. Qin, Symplectic Geometric Algorithms for Hamiltonian Systems, SpringerVerlag/Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House, Berlin/Hangzhou, 2010.
[15] K. Feng, H.M. Wu, M.Z. Qin, and D.L. Wang, Construction of canonical difference schemes for Hamiltonian formalism via generating functions, J. Comput. Math., 7:1(1989), 71-96.
[16] Z. Ge and J.E. Marsden, Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators, Phys. Lett. A, 133:3(1988), 134-139.
[17] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration:Structure-Preserving Algorithms for Ordinary Differential Equations, Springer-Verlag, Berlin, 2nd edition, 2006.
[18] J.L. Hong and Y.J. Sun, Generating functions of multi-symplectic RK methods via DW HamiltonJacobi equations, Numer. Math., 110(2008), 491-519.
[19] C. Kane, J.E. Marsden, and M. Ortiz, Symplectic-energy-momentum preserving variational integrators, J. Math. Phys., 40:7(1999), 3353-3371.
[20] H.C. Li, Y.S. Wang, and M.Z. Qin, A sixth order averaged vector field method, J. Comput. Math., 34:5(2016), 479-498.
[21] L. Li and D.L. Wang, Energy and quadratic invariants preserving methods for Hamiltonian systems with holonomic constraints, arXiv preprint arXiv:2007.06338, 2020.
[22] J.E. Marsden, G.W. Patrick, and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs, Commun. Math. Phys., 199(1998), 351-395.
[23] R.I. McLachlan, G.R.W. Quispel, and N. Robidoux, Geometric integration using discrete gradients, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 357(1999), 1021-1045.
[24] R.I. McLachlan, Y.J. Sun, and P.S.P Tse, Linear stability of partitioned Runge-Kutta methods, SIAM J. Numer. Anal., 49:1(2011), 232-263.
[25] C.R. Menyuk, Some properties of the discrete Hamiltonian method, Physica D, 11:1(1984), 109- 129.
[26] F. Miniati and A. Beresnyak, Self-similar energetics in large clusters of galaxies, Nature, 523(2015), 59-62.
[27] M.Z. Qin and W.J. Zhu, Construction of higher order symplectic schemes by composition, Computing, 47(1992), 309-321.
[28] G.R.W. Quispel and D.I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A-Math. Theor., 41(2008), 045206.
[29] R.D. Ruth, A canonical integration technique, IEEE Trans. Nucl. Sci., 30:4(1983), 2669-2671.
[30] J.M. Sanz-Serna, Runge-Kutta schemes for Hamiltonian systems, BIT, 28(1988), 877-883.
[31] J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian problems, Chapman & Hall, London, 1994.
[32] Z.J. Shang, Generating functions for volume-preserving mappings and Hamilton-Jacobi equations for source-free dynamical Systems, Sci. China Ser. A, 37:10(1994), 1172-1188.
[33] G. Sun, Symplectic partitioned Runge-Kutta methods, J. Comput. Math., 11:4(1993), 365-372.
[34] Y.B. Suris, Hamiltonian methods of Runge-Kutta type and their variational interpretation, Matem. Mod., 2:4(1990), 78-87.
[35] W.S. Tang and Y.J. Sun, Time finite element methods:a unified framework for numerical discretizations of ODEs, Appl. Math. Comput., 219(2012), 2158-2179.
[36] D.L. Wang, A.G. Xiao, and X.Y. Li, Parametric symplectic partitioned Runge-Kutta methods with energy-preserving properties for Hamiltonian system, Comput. Phys. Commun., 184(2013), 303-310.
[37] L.J. Wang and J.L. Hong, Generating functions for stochastic symplectic methods, Discrete Contin. Dyn. Syst., 34:3(2014), 1211-1228.
[38] X.Y. Wu, B. Wang, and W. Shi, Efficient energy-preserving integrators for oscillatory Hamiltonian systems, J. Comput. Phys., 235(2013), 587-605.
[39] E.E. Zotos, Classifying orbits in the classical Hénon-Heiles Hamiltonian system, Nonlinear Dyn., 79(2015), 1665-1677.
[1] Lei Li, Dongling Wang. ENERGY AND QUADRATIC INVARIANTS PRESERVING METHODS FOR HAMILTONIAN SYSTEMS WITH HOLONOMIC CONSTRAINTS [J]. Journal of Computational Mathematics, 2023, 41(1): 107-132.
[2] Bin Wang, Xinyuan Wu. LONG-TIME OSCILLATORY ENERGY CONSERVATION OF TOTAL ENERGY-PRESERVING METHODS FOR HIGHLY OSCILLATORY HAMILTONIAN SYSTEMS [J]. Journal of Computational Mathematics, 2022, 40(1): 70-88.
[3] Ludwig Gauckler. ON ENERGY CONSERVATION BY TRIGONOMETRIC INTEGRATORS IN THE LINEAR CASE WITH APPLICATION TO WAVE EQUATIONS [J]. Journal of Computational Mathematics, 2020, 38(5): 705-714.
[4] Haochen Li, Yushun Wang, Mengzhao Qin. A SIXTH ORDER AVERAGED VECTOR FIELD METHOD [J]. Journal of Computational Mathematics, 2016, 34(5): 479-498.
[5] Kai Liu, Xinyuan Wu. HIGH-ORDER SYMPLECTIC AND SYMMETRIC COMPOSITION METHODS FOR MULTI-FREQUENCY AND MULTI-DIMENSIONAL OSCILLATORY HAMILTONIAN SYSTEMS [J]. Journal of Computational Mathematics, 2015, 33(4): 356-378.
[6] Chuanmiao Chen, Qiong Tang, Shufang Hu. FINITE ELEMENT METHOD WITH SUPERCONVERGENCE FOR NONLINEAR HAMILTONIAN SYSTEMS [J]. Journal of Computational Mathematics, 2011, 29(2): 167-184.
[7] Peter G$\ddot{o}$rtz. BACKWARD ERROR ANALYSIS OF SYMPLECTIC INTEGRATORS FOR LINEAR SEPARABLE HAMILTONIAN SYSTEMS [J]. Journal of Computational Mathematics, 2002, 20(5): 449-460.
[8] Kang Feng,Dao-liu Wang. VARIATIONS ON A THEME BY EULER [J]. Journal of Computational Mathematics, 1998, 16(2): 97-106.
Viewed
Full text


Abstract