Previous Articles Next Articles
Yonghui Bo1, Wenjun Cai2, Yushun Wang2
Yonghui Bo, Wenjun Cai, Yushun Wang. TWO NOVEL CLASSES OF ARBITRARY HIGH-ORDER STRUCTURE-PRESERVING ALGORITHMS FOR CANONICAL HAMILTONIAN SYSTEMS[J]. Journal of Computational Mathematics, 2023, 41(3): 395-414.
[1] P. Betsch and P. Steinmann, Inherently energy conserving time finite elements for classical mechanics, J. Comput. Phys., 160(2000), 88-116. [2] Y.H. Bo, W.J. Cai, and Y.S. Wang, A general symplectic scheme with three free parameters and its applications, Appl. Math. Lett., 112(2021), 106792. [3] Y.H. Bo, W.J. Cai, and Y.S. Wang, A note on the generating function method, Adv. Appl. Math. Mech., 13:4(2021), 982-1004. [4] L. Brugnano, G. Gurioli, and F. Iavernaro, Analysis of energy and quadratic invariant preserving (EQUIP) methods, J. Comput. Appl. Math., 335(2018), 51-73. [5] L. Brugnano and F. Iavernaro, Line Integral Methods for Conservative Problems, Chapman & Hall/CRC:Boca Raton, FL, USA, 2016. [6] L. Brugnano, F. Iavernaro, and D. Trigiante, Energy- and quadratic invariants-preserving integrators based upon Gauss collocation formulae, SIAM J. Numer. Anal., 50:6(2012), 2897-2916. [7] L. Brugnano, F. Iavernaro, and D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral methods), J. Numer. Anal. Ind. Appl. Math., 5:1-2(2010), 17-37. [8] W.J. Cai, H.C. Li, and Y.S. Wang, Partitioned averaged vector field methods, J. Comput. Phys., 370(2018), 25-42. [9] P. Chartier, E. Faou, and A. Murua, An algebraic approach to invariant preserving integrators:the case of quadratic and Hamiltonian invariants, Numer. Math., 103(2006), 575-590. [10] C.C. Chen, J.L. Hong, C. Sim, and K. Sonwu, Energy and quadratic invariants preserving (EQUIP) multi-symplectic methods for Hamiltonian wave equations, J. Comput. Phys., 418(2020), 109599. [11] G. Cooper, Stability of Runge-Kutta methods for trajectory problems, IMA J. Numer. Anal., 7(1987), 1-13. [12] R. De Vogelaere, Methods of integration which preserve the contact transformation property of Hamiltonian equations, Tech. Report No 4, Dept. Mathem., Univ. of Notre Dame, Notre Dame, Ind., 1956. [13] K. Feng, On difference schemes and symplectic geometry, in Proc 1984 Beijing Symp Diff Geometry and Diff Equations, K. Feng (ed.), Science Press, Beijing, 1985, 42-58. [14] K. Feng and M.Z. Qin, Symplectic Geometric Algorithms for Hamiltonian Systems, SpringerVerlag/Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House, Berlin/Hangzhou, 2010. [15] K. Feng, H.M. Wu, M.Z. Qin, and D.L. Wang, Construction of canonical difference schemes for Hamiltonian formalism via generating functions, J. Comput. Math., 7:1(1989), 71-96. [16] Z. Ge and J.E. Marsden, Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators, Phys. Lett. A, 133:3(1988), 134-139. [17] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration:Structure-Preserving Algorithms for Ordinary Differential Equations, Springer-Verlag, Berlin, 2nd edition, 2006. [18] J.L. Hong and Y.J. Sun, Generating functions of multi-symplectic RK methods via DW HamiltonJacobi equations, Numer. Math., 110(2008), 491-519. [19] C. Kane, J.E. Marsden, and M. Ortiz, Symplectic-energy-momentum preserving variational integrators, J. Math. Phys., 40:7(1999), 3353-3371. [20] H.C. Li, Y.S. Wang, and M.Z. Qin, A sixth order averaged vector field method, J. Comput. Math., 34:5(2016), 479-498. [21] L. Li and D.L. Wang, Energy and quadratic invariants preserving methods for Hamiltonian systems with holonomic constraints, arXiv preprint arXiv:2007.06338, 2020. [22] J.E. Marsden, G.W. Patrick, and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs, Commun. Math. Phys., 199(1998), 351-395. [23] R.I. McLachlan, G.R.W. Quispel, and N. Robidoux, Geometric integration using discrete gradients, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 357(1999), 1021-1045. [24] R.I. McLachlan, Y.J. Sun, and P.S.P Tse, Linear stability of partitioned Runge-Kutta methods, SIAM J. Numer. Anal., 49:1(2011), 232-263. [25] C.R. Menyuk, Some properties of the discrete Hamiltonian method, Physica D, 11:1(1984), 109- 129. [26] F. Miniati and A. Beresnyak, Self-similar energetics in large clusters of galaxies, Nature, 523(2015), 59-62. [27] M.Z. Qin and W.J. Zhu, Construction of higher order symplectic schemes by composition, Computing, 47(1992), 309-321. [28] G.R.W. Quispel and D.I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A-Math. Theor., 41(2008), 045206. [29] R.D. Ruth, A canonical integration technique, IEEE Trans. Nucl. Sci., 30:4(1983), 2669-2671. [30] J.M. Sanz-Serna, Runge-Kutta schemes for Hamiltonian systems, BIT, 28(1988), 877-883. [31] J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian problems, Chapman & Hall, London, 1994. [32] Z.J. Shang, Generating functions for volume-preserving mappings and Hamilton-Jacobi equations for source-free dynamical Systems, Sci. China Ser. A, 37:10(1994), 1172-1188. [33] G. Sun, Symplectic partitioned Runge-Kutta methods, J. Comput. Math., 11:4(1993), 365-372. [34] Y.B. Suris, Hamiltonian methods of Runge-Kutta type and their variational interpretation, Matem. Mod., 2:4(1990), 78-87. [35] W.S. Tang and Y.J. Sun, Time finite element methods:a unified framework for numerical discretizations of ODEs, Appl. Math. Comput., 219(2012), 2158-2179. [36] D.L. Wang, A.G. Xiao, and X.Y. Li, Parametric symplectic partitioned Runge-Kutta methods with energy-preserving properties for Hamiltonian system, Comput. Phys. Commun., 184(2013), 303-310. [37] L.J. Wang and J.L. Hong, Generating functions for stochastic symplectic methods, Discrete Contin. Dyn. Syst., 34:3(2014), 1211-1228. [38] X.Y. Wu, B. Wang, and W. Shi, Efficient energy-preserving integrators for oscillatory Hamiltonian systems, J. Comput. Phys., 235(2013), 587-605. [39] E.E. Zotos, Classifying orbits in the classical Hénon-Heiles Hamiltonian system, Nonlinear Dyn., 79(2015), 1665-1677. |
[1] | Lei Li, Dongling Wang. ENERGY AND QUADRATIC INVARIANTS PRESERVING METHODS FOR HAMILTONIAN SYSTEMS WITH HOLONOMIC CONSTRAINTS [J]. Journal of Computational Mathematics, 2023, 41(1): 107-132. |
[2] | Bin Wang, Xinyuan Wu. LONG-TIME OSCILLATORY ENERGY CONSERVATION OF TOTAL ENERGY-PRESERVING METHODS FOR HIGHLY OSCILLATORY HAMILTONIAN SYSTEMS [J]. Journal of Computational Mathematics, 2022, 40(1): 70-88. |
[3] | Ludwig Gauckler. ON ENERGY CONSERVATION BY TRIGONOMETRIC INTEGRATORS IN THE LINEAR CASE WITH APPLICATION TO WAVE EQUATIONS [J]. Journal of Computational Mathematics, 2020, 38(5): 705-714. |
[4] | Haochen Li, Yushun Wang, Mengzhao Qin. A SIXTH ORDER AVERAGED VECTOR FIELD METHOD [J]. Journal of Computational Mathematics, 2016, 34(5): 479-498. |
[5] | Kai Liu, Xinyuan Wu. HIGH-ORDER SYMPLECTIC AND SYMMETRIC COMPOSITION METHODS FOR MULTI-FREQUENCY AND MULTI-DIMENSIONAL OSCILLATORY HAMILTONIAN SYSTEMS [J]. Journal of Computational Mathematics, 2015, 33(4): 356-378. |
[6] | Chuanmiao Chen, Qiong Tang, Shufang Hu. FINITE ELEMENT METHOD WITH SUPERCONVERGENCE FOR NONLINEAR HAMILTONIAN SYSTEMS [J]. Journal of Computational Mathematics, 2011, 29(2): 167-184. |
[7] | Peter G$\ddot{o}$rtz. BACKWARD ERROR ANALYSIS OF SYMPLECTIC INTEGRATORS FOR LINEAR SEPARABLE HAMILTONIAN SYSTEMS [J]. Journal of Computational Mathematics, 2002, 20(5): 449-460. |
[8] | Kang Feng,Dao-liu Wang. VARIATIONS ON A THEME BY EULER [J]. Journal of Computational Mathematics, 1998, 16(2): 97-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||