• 论文 •    下一篇

矩阵分裂序列与线性二级迭代法

蔡放,熊岳山,   

  1. 国防科技大学理学院数学系,国防科技大学计算机学院 长沙 410073 长沙大学数学与信息科学系,长沙 410003,长沙 410073
  • 出版日期:2006-02-14 发布日期:2006-02-14

蔡放,熊岳山,. 矩阵分裂序列与线性二级迭代法[J]. 计算数学, 2006, 28(2): 113-120.

MATRICES SPLITTING SEQUENCES AND TWO-STAGE ITERATIVE METHODS

  1. Cai Fang (Department of Mathematics, School of Science, National University of Defense Technology, Changsha 410073, China; Department of Mathematics and Information Science, ChangSha University, Changsha 410003, China) Xiong Yueshan (School of Computer, National University of Defense Technology, Changsha 410073, China)
  • Online:2006-02-14 Published:2006-02-14
本文讨论线性非定常二级迭代法的收敛性.对于一般的基于矩阵分裂序列的迭代法,针对分裂序列本身找到了一种新的且相对较弱的收敛性条件,并因此得到了由非定常二级迭代法推广而来的广义二级迭代法的收敛结果.从而,用一种新的方法证明了非定常二级迭代法的收敛性.
This paper discusses the convergence of the non-stationary two-stage iterative methods for linear systems. A sort of new and weak convergent condition satisfied by the matrices splitting sequences is found for the iterative methods with the matrices splitting sequences. We then obtain the convergent result of the generalized two-stage iterative methods, which are the generalization of the non-stationary two-stage iterative methods. Consequently, the convergence of the non-stationary two-stage iterative methods is proofed over again through a new approach.
()

[1] P.J. Lanzkron, D.J. Rose and D.B. Szyld, Convergence of nested classical iterative methods for linear systems, Numer. Math., 58(1991), 685-702.
[2]曹志浩,线性方程组二级迭代法的收敛性,计算数学,17:1(1995),99-109.
[3] Cao Zhihao, Convergence of block two-stage iterative methods for symmetric positive definite systems, Numer. Math., 90(2001), 47-63.
[4] A. Frommer, D.B. Szyld, H-splittings and two-stage iterative methods, Numer. Math., 63 (1992), 345-356.
[5] A. Frommer, D.B. Szyld, Asynchronous two-stage iterative methods, Numer. Math., 69(1994), 141-153.
[6] N.K. Nichols, On the convergence of two-stage iterative processes for solving linear equations, SIAM. J. Numer. Anal, 10(1973), 460-469.
[7] Bai Zhongzhi, Wang Chuanlong, Convergence theorems for parallel multisplitting two-stage iterative methods for mildly nonlinear systems, Linear Algebra and its Applications, 362(2003), 237-250.
[8] Bai Zhongzhi, Wang Chuanlong, On the convergence of nonstationary multisplitting two-stage iteration methods for hermitian positive definite linear systems, J. of Computation and Applied Mathematics, 138 (2002), 287-296.
[9] Bai Zhongzhi, D.J. Evans and Wang Deren, On the convergence of asynchronous nested matrix multisplitting methods for linear systems, J. of Computational Mathematics, 17:6(1999), 575-588.
[10] Bai Zhongzhi, Wai Deren, The monotone convergence of the two-stage iterative method for solving large sparse systems of linear equations, Applied Mathematics Letters, 10:1(1997), 113-117.
[11] Bai Zhongzhi, V.Migallon, J. Penades and D.B. Szyld, Block and asynchronous two-stage methods for mildly nonlinear systems, Numer. Math., 82(1999), 1-20.
[12]谷同祥,刘兴平,并行二级多分裂迭代方法,计算数学,20:2(1998),153—166.
[13] D.P.O' Leary, R.E. White, Multi-splittings of matrices and parallel solution of linear systems, SIAM. J. Alg. Dis. Meth., 6(1985), 630-640.
[14] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Science, Academic Press, New York, 1972.
[15] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
[16]陈传璋等,数学分析(下册),北京:高等教育出版社,1983年.
No related articles found!
阅读次数
全文


摘要