• 论文 • 下一篇
蔡放,熊岳山,
蔡放,熊岳山,. 矩阵分裂序列与线性二级迭代法[J]. 计算数学, 2006, 28(2): 113-120.
分享此文:
[1] P.J. Lanzkron, D.J. Rose and D.B. Szyld, Convergence of nested classical iterative methods for linear systems, Numer. Math., 58(1991), 685-702. [2]曹志浩,线性方程组二级迭代法的收敛性,计算数学,17:1(1995),99-109. [3] Cao Zhihao, Convergence of block two-stage iterative methods for symmetric positive definite systems, Numer. Math., 90(2001), 47-63. [4] A. Frommer, D.B. Szyld, H-splittings and two-stage iterative methods, Numer. Math., 63 (1992), 345-356. [5] A. Frommer, D.B. Szyld, Asynchronous two-stage iterative methods, Numer. Math., 69(1994), 141-153. [6] N.K. Nichols, On the convergence of two-stage iterative processes for solving linear equations, SIAM. J. Numer. Anal, 10(1973), 460-469. [7] Bai Zhongzhi, Wang Chuanlong, Convergence theorems for parallel multisplitting two-stage iterative methods for mildly nonlinear systems, Linear Algebra and its Applications, 362(2003), 237-250. [8] Bai Zhongzhi, Wang Chuanlong, On the convergence of nonstationary multisplitting two-stage iteration methods for hermitian positive definite linear systems, J. of Computation and Applied Mathematics, 138 (2002), 287-296. [9] Bai Zhongzhi, D.J. Evans and Wang Deren, On the convergence of asynchronous nested matrix multisplitting methods for linear systems, J. of Computational Mathematics, 17:6(1999), 575-588. [10] Bai Zhongzhi, Wai Deren, The monotone convergence of the two-stage iterative method for solving large sparse systems of linear equations, Applied Mathematics Letters, 10:1(1997), 113-117. [11] Bai Zhongzhi, V.Migallon, J. Penades and D.B. Szyld, Block and asynchronous two-stage methods for mildly nonlinear systems, Numer. Math., 82(1999), 1-20. [12]谷同祥,刘兴平,并行二级多分裂迭代方法,计算数学,20:2(1998),153—166. [13] D.P.O' Leary, R.E. White, Multi-splittings of matrices and parallel solution of linear systems, SIAM. J. Alg. Dis. Meth., 6(1985), 630-640. [14] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Science, Academic Press, New York, 1972. [15] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962. [16]陈传璋等,数学分析(下册),北京:高等教育出版社,1983年. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||