张亚东1, 石东洋2
张亚东, 石东洋. 各向异性网格下抛物方程一个新的非协调混合元收敛性分析[J]. 计算数学, 2013, 35(2): 171-180.
Zhang Yadong, Shi Dongyang. CONVERGENCE ANALYSIS OF A NEW NONCONFORMING MIXED FINITE ELEMENT FOR PARABOLIC EQUATION ON ANISOTROPIC MESH[J]. Mathematica Numerica Sinica, 2013, 35(2): 171-180.
Zhang Yadong1, Shi Dongyang2
MR(2010)主题分类:
分享此文:
[1] Clarle P G. The Finite Element Method for Elliptic Problem[M]. North-Holland: Amsterdam,1978.[2] 林群, 严宁宁. 高效有限元构造与分析[M]. 保定: 河北大学出版社, 1996.[3] Thomée V. Galerkin Finite Element Methods for Parabolic Problems[M]. Springer-Verlay: BerlinHeidelberg, 1997.[4] Thomée V, Xu J C, Zhang N Y. Superconvergence of the gradient in piecewise linear finite elementapproximation to a parabolic problem[J]. SIAM J. Numer. Anal., 1989, 26(3): 553-573.[5] Thomée V, Zhang N Y. Error estimates for semidiscrete finite element methods for parabolicinterod- ifferential equations[J]. Math. Comp., 1989, 53(187): 121-139.[6] Lin Y P, Thomée V, Wahlbin L B. Ritz-Volterra projections to finite element spaces and applicationsto intergrodifferential and related equations[J]. SIAM J. Numer. Anal., 1991, 28(4):1047-1070.[7] Chrysafinos K, Hou L S. Error estimates for semidiscrete finite element approximations of linearand semilinear paraboic equations uner minimal regularity assumptions[J]. SIAM J. Numer. Anal.,2002, 40(1): 282-306.[8] Apel Th. Anisotropic Finite Elements: Local Estimates and Applications[M]. B.G. Teubner Stuttgart:Leipzig, 1999.[9] Apel T, Dobrowolski M. Anisotropic interpolation with application to the finite elment method[J].Computing, 1992, 47(3-4): 277-293.[10] Chen S C, Shi D Y, Zhao Y C. Anisotropic interpolation and quasi-Wilson element for narrowquadrilateral meshes[J]. IMA J. Numer. Anal., 2004, 24(1): 77-95.[11] Shi D Y, Mao S P, Chen S C. On the anisotropic accuracy analysis of ACM’s nonconforming finiteelement[J]. J. Comput. Math., 2005, 23(6): 635-646.[12] Shi D Y, Mao S P, Chen S C. Anisotropic nonconforming finite element with some superconvergenceresults[J]. J. Comput. Math., 2005, 23(3): 261-274.[13] Lin Q, Lutz Tobiska, Zhou A H. Superconvergence and extrapolation of nonconforming low orderfinite elements applied to the possion equation[J]. IMA J. Numer. Anal., 2005, 25(1): 160-181.[14] Shi D Y, Zhang Y R. A nonconforming anisotropic finite element approximation with movinggrides for Stokes problem[J]. J. Comput. Math., 2006, 24(5): 561-578.[15] Shi D Y, Mao S P, Chen S C. A locking-free anisotropic nonconforming finite element for planarlinear elasticity problem[J]. Acta Math. Sci. Ser. B Engl. Ed., 2007, 27B(1): 193-202.[16] Shi D Y, Guan H B. A class of Crouzeix-Raviart type nonconforming finite element methodsfor parabolic variational inequality problem with moving grid on anistropic meshes[J]. Hokkaido.Math. J., 2007, 36(4): 687-709.[17] Shi D Y, Pei L F. Low order Crouzeix-Raviart type nonconforming finite element methods forapproximationg Maxwell’s equations[J]. Int. J. Numer. Anal. Model, 2008, 5(3): 373-385.[18] Shi D Y, GongW. A low order nonconforming anisotropic finite element approximation to parabolicproblem[J]. J. Syst. Sci. & Complexity, 2009, 22: 518-532.[19] Shi D Y, Ren J C. Nonconforming mixed finite element approximation to the stationary Navier-Stokes equations on anisotropic meshes[J]. Nonlinear Anal. TMA., 2009, 71(9): 3842-3852.[20] Shi D Y, Wang C X. A new low-order non-conforming mixed finite-element scheme for secondorderelliptic problems[J]. Int. J. Comput. Math., 2011, 88(10): 2167-2177.[21] Shi D Y, Zhang Y D. High accuracy analysis of a new nonconforming mixed finite element schemefor Sobolev equations[J]. Appl. Math. Comput., 2011, 218(7): 3176-3186.[22] Shi D Y, Xu C. Anisotropic nonconforming Crouzeix-Raviart type FEM for second-order ellipticproblems[J]. Appl. Math. Mech., 2012, 33(2): 243-252.[23] Shi D Y, Xu C. An anisotropic locking-free nonconforming triangular finite element method forplanar linear elasticity problem[J]. J. Comput. Math., 2012, 30(2): 124-138.[24] Shi D Y, Wang X L. A low order anisotropic nonconforming characteristic finite element methodfor a convection-dominated transport problem[J]. Appl. Math. Comput., 2009, 213(2): 411-418.[25] Shi D Y, Wang X L. Two low order characteristic finite element methods for a convectiondominatedtransport problem[J]. Comput. Math. Appl., 2010, 59(2): 3630-3639.[26] Shi D Y, Yu Z Y. Low-order nonconforming mixed finite element methods for stationary incompressiblemagnetohydrodynamics equations[J]. J. Appl. Math., vol. 2012, Article ID 825609, 21pages, 2012. doi:10.1155/2012/825609[27] 陈绍春, 陈红如. 二阶椭圆问题新的混合元格式[J]. 计算数学,2010, 32(2): 213-218.[28] 史峰, 于佳平, 李开泰. 椭圆型方程的一种新型混合有限元格式[J]. 工程数学学报, 2011, 28(2): 231-237.[29] 刘洋, 李宏, 何斯日古楞. 伪双曲型积分-微分方程的H1-Galerkin混合元法误差估计[J]. 高等学校计算数学学报, 2010, 32(1):1-20. |
[1] | 廖丽丹, 张国凤. 三类有效预处理子的关系及其优化[J]. 计算数学, 2022, 44(4): 545-560. |
[2] | 杨学敏, 牛晶, 姚春华. 椭圆型界面问题的破裂再生核方法[J]. 计算数学, 2022, 44(2): 217-232. |
[3] | 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443. |
[4] | 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366. |
[5] | 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456. |
[6] | 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211. |
[7] | 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90. |
[8] | 陈圣杰, 戴彧虹, 徐凤敏. 稀疏线性规划研究[J]. 计算数学, 2018, 40(4): 339-353. |
[9] | 古振东, 孙丽英. 一类弱奇性Volterra积分微分方程的级数展开数值解法[J]. 计算数学, 2017, 39(4): 351-362. |
[10] | 刘丽华, 马昌凤, 唐嘉. 求解广义鞍点问题的一个新的类SOR算法[J]. 计算数学, 2016, 38(1): 83-95. |
[11] | 石东洋, 史艳华, 王芬玲. 四阶抛物方程H1-Galerkin混合有限元方法的超逼近及最优误差估计[J]. 计算数学, 2014, 36(4): 363-380. |
[12] | 石东洋, 张亚东. 抛物型方程一个新的非协调混合元超收敛性分析及外推[J]. 计算数学, 2013, 35(4): 337-352. |
[13] | 黄娜, 马昌凤, 谢亚君. 求解非对称代数Riccati 方程几个新的预估-校正法[J]. 计算数学, 2013, 35(4): 401-418. |
[14] | 任志茹. 三阶线性常微分方程Sinc方程组的结构预处理方法[J]. 计算数学, 2013, 35(3): 305-322. |
[15] | 陈绍春, 梁冠男, 陈红如. Zienkiewicz元插值的非各向异性估计[J]. 计算数学, 2013, 35(3): 271-274. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||