刘丽华1, 马昌凤2, 唐嘉2
刘丽华, 马昌凤, 唐嘉. 求解广义鞍点问题的一个新的类SOR算法[J]. 计算数学, 2016, 38(1): 83-95.
Liu Lihua, Ma Changfeng, Tang Jia. A NEW SOR-LIKE METHOD FOR SOLVING GENERALIZED SADDLE POINT PROBLEMS[J]. Mathematica Numerica Sinica, 2016, 38(1): 83-95.
Liu Lihua1, Ma Changfeng2, Tang Jia2
[1] Benzi M and Golub G H. A preconditioner for generalized saddle point problems[J]. SIAM J. Matrix Anal. Appl., 2004, 26:20-41.[2] Elman H C, Silvester D J and Wathen A J. Finite Elements and Fast Iterative Solvers[M]. Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2005.[3] Bai Z Z and Li G Q. Restrictively preconditioned conjugate grdient methods for systems of linear equations[J]. IMA J. Numer. Anal., 2003, 23:561-580.[4] Yin J F and Bai Z Z. The restrictively preconditioned conjugate gradient methods on normal residual for block two-by-two linear systems[J]. J. Comput. Math., 2008, 26:240-249.[5] Brezzi F and Fortin M. Mixed and Hybrid Finite Element Methods[M]. Springer-Verlag, New York and London, 1991.[6] Elman H. Multigrid and Krylov subspace methods for the discrete Stokes equations[J]. Internat. J. Numer. Methods Fluids, 1996, 22:755-770.[7] Klawonn A. Block-triangular preconditioners for saddle-point problems with a penalty term[J]. SIAM J. Sci. Comput., 1998, 19:172-184.[8] Silvester D, Wathen A. Fast iterative solution of stabilized Stokes systems, Part Ⅱ:Using general block preconditioners[J]. SIAM J. Numer. Anal., 1994, 31:1352-1367.[5] G. H. Golub, X. Wu and J.-Y. Yuan. SOR-like methods for augumented systems.[J]BIT, 2001, 41:71-85.[9] Michele Benzi, Gene H. Golub, Jörg Liesen. Numerical solution of saddle point problems[M]. Acta Numerica(2005), Cambridge University Press, 2005, 1-137.[10] Bai Z Z, Wang Z Q. On parameterized inexact Uzawa methods for generalized saddle point problems[J]. Linear Algebra and its Applications, 2008, 428:2900-2932.[11] Bai Z Z and Golub G H. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems[J]. IMA J. Numer. Anal., 2007, 27:1-23.[12] Bramble J H and Pasciak J E. A preconditioning technique for inde nite systems resulting from mixed approximations of elliptic problems[J]. Math. Comput., 1988, 50:1-17.[13] Golub G H, Wu X and Yuan J Y. SOR-like methods for augumented systems[J]. BIT, 2001, 41:71-85.[14] 沈栩竹, 李红娟, 李杰. 求解鞍点问题的一种修正对称SOR-like算法[J]. 海南大学学报自然科学, 2010, 4(28):299-305.[15] Zheng Q Q and Ma C F. A new SOR-like method for the saddle point problems[J]. Appl. Math. Comput, 2014, 233:421-429.[16] Shao X, Shen H, Li C. The generalized SOR-like method for the augmented systems[J]. Int. J. Inf. Syst. Sci., 2006, 2:92-98.[17] Young D W. Interation Solution for Large Systems[M]. Academic Press, New York, 1971.[18] Bai Z Z, Parlett B N and Wang Z Q. On generalized successive overrelaxation methods for augmented linear systems[J]. Numer. Math., 2005, 102:1-38. |
[1] | 杨学敏, 牛晶, 姚春华. 椭圆型界面问题的破裂再生核方法[J]. 计算数学, 2022, 44(2): 217-232. |
[2] | 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443. |
[3] | 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366. |
[4] | 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456. |
[5] | 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90. |
[6] | 陈圣杰, 戴彧虹, 徐凤敏. 稀疏线性规划研究[J]. 计算数学, 2018, 40(4): 339-353. |
[7] | 古振东, 孙丽英. 一类弱奇性Volterra积分微分方程的级数展开数值解法[J]. 计算数学, 2017, 39(4): 351-362. |
[8] | 黄娜, 马昌凤, 谢亚君. 求解非对称代数Riccati 方程几个新的预估-校正法[J]. 计算数学, 2013, 35(4): 401-418. |
[9] | 陈绍春, 梁冠男, 陈红如. Zienkiewicz元插值的非各向异性估计[J]. 计算数学, 2013, 35(3): 271-274. |
[10] | 任志茹. 三阶线性常微分方程Sinc方程组的结构预处理方法[J]. 计算数学, 2013, 35(3): 305-322. |
[11] | 张亚东, 石东洋. 各向异性网格下抛物方程一个新的非协调混合元收敛性分析[J]. 计算数学, 2013, 35(2): 171-180. |
[12] | 曹阳, 谈为伟, 蒋美群. 广义鞍点问题的松弛维数分解预条件子[J]. 计算数学, 2012, 34(4): 351-360. |
[13] | 曹阳, 牛强, 蒋美群. 广义鞍点问题基于PSS的约束预条件子[J]. 计算数学, 2012, 34(2): 183-194. |
[14] | 陈争, 马昌凤. 求解非线性互补问题一个新的 Jacobian 光滑化方法[J]. 计算数学, 2010, 32(4): 361-372. |
[15] | 蒋美群, 曹阳. 广义鞍点问题的块三角预条件子[J]. 计算数学, 2010, 32(1): 47-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||