刘亚君, 刘新为
梯度法是求解无约束最优化的一类重要方法.步长选取的好坏与梯度法的数值表现息息相关.注意到BB步长隐含了目标函数的二阶信息,本文将BB法与信赖域方法相结合,利用BB步长的倒数去近似目标函数的Hesse矩阵,同时利用信赖域子问题更加灵活地选取梯度法的步长,给出求解无约束最优化问题的单调和非单调信赖域BB法.在适当的假设条件下,证明了算法的全局收敛性.数值试验表明,与已有的求解无约束优化问题的BB类型的方法相比,非单调信赖域BB法中ek=‖xk-x*‖的下降呈现更明显的阶梯状和单调性,因此收敛速度更快.