• 论文 • 上一篇    下一篇

形状可调的C2连续三次三角Hermite插值样条

李军成, 刘成志   

  1. 湖南人文科技学院数学系, 湖南娄底 417000
  • 收稿日期:2015-04-23 出版日期:2016-04-15 发布日期:2016-05-13
  • 基金资助:

    湖南省教育厅资助科研项目(14B099);湖南省自然科学基金资助项目(13JJ6081).

李军成, 刘成志. 形状可调的C2连续三次三角Hermite插值样条[J]. 计算数学, 2016, 38(2): 187-199.

Li Juncheng, Liu Chengzhi. SHAPE-ADJUSTABLE AND C2 CONTINUOUS CUBIC TRIGONOMETRIC HERMITE INTERPOLATION SPLINE[J]. Mathematica Numerica Sinica, 2016, 38(2): 187-199.

SHAPE-ADJUSTABLE AND C2 CONTINUOUS CUBIC TRIGONOMETRIC HERMITE INTERPOLATION SPLINE

Li Juncheng, Liu Chengzhi   

  1. Department of Mathematics, Hunan Institute of Humanities, Science and Technology, Loudi 417000, Hunan, China
  • Received:2015-04-23 Online:2016-04-15 Published:2016-05-13
基于函数空间{1,sint,cost,sin2t,sin3t,cos3t}构造了一种形状可调的三次三角Hermite插值样条.该样条不仅具有带参数的Hermite型插值样条的主要特性,而且在插值节点为等距时可自动满足C2连续,其形状还可通过所带的参数进行调节.在适当条件下,该样条对应的Ferguson曲线可精确表示工程中一些常见的曲线.
This paper presents a class of shape-adjustable cubic trigonometric Hermite interpolation spline based on the space{1, sint, cost, sin2t, sin3t, cos3t}, which shares the main properties of the Hermite-type interpolation spline with parameters. The proposed spline not only automatically satisfies C2 continuity when the interpolation nodes are equally spaced, but also can be adjusted by the parameters. Under the proper conditions, the corresponding Ferguson curve can precisely represent some general curves in engineering.

MR(2010)主题分类: 

()
[1] Deboor C, Hollig K, Sabin M. High Accuracy Geometric Hermite Interpolation[J]. Computer Aided Geometric Design, 1987, 4(4):269-278.

[2] Lian F. G3 Approximation of Conic Sections By Quintic Polynomial Curves[J]. Computer Aided Geometric Design, 1999, 16(7):755-766.

[3] Lorentz R A. Multivariate Hermite Interpolation by Algebraic Polynomials:A Survey[J]. Journal of Computational and Applied Mathematics, 2000, 122(2):167-201.

[4] Gfrerrer A, Roschel O. Blended Hermite Interpolations[J]. Computer Aided Geometric Design, 2001, 18(9):865-873.

[5] Yong J H, Cheng F H. Geometric Hermite Curves with Minimum Strain Energy[J]. Computer Aided Geometric Design, 2004, 21(3):281-301.

[6] 谢进, 檀结庆, 李声锋. 有理三次Hermite插值样条及其逼近性质[J]. 工程数学学报, 2011, 28(3):385-392.

[7] 谢进, 谭结庆, 刘植, 等. 一类带参数的有理三次三角Hermite插值样条[J]. 计算数学, 2011, 33(2):125-132.

[8] 李军成, 刘纯英, 杨炼. 带参数的四次Hermite插值样条[J]. 计算机应用, 2012, 32(7):1868-1870.

[9] 李军成,钟月娥,谢淳. 带形状参数的三次三角Hermite插值样条曲线[J]. 计算机工程与应用, 2014, 50(17):182-185.
[1] 谢进, 檀结庆, 刘植, 李声锋. 一类带参数的有理三次三角Hermite插值样条[J]. 计算数学, 2011, 33(2): 125-132.
阅读次数
全文


摘要