• 论文 • 上一篇    下一篇

对流反应扩散方程的稳定化时间间断时空有限元解的误差估计

唐斯琴, 李宏, 董自明, 赵智慧   

  1. 内蒙古大学数学科学学院, 呼和浩特 010021
  • 收稿日期:2018-12-10 出版日期:2020-11-15 发布日期:2020-11-15
  • 基金资助:

    国家自然科学基金(11761053,11661058,11701299),内蒙古自然科学基金(2017MS0107,2018MS01020),内蒙古自治区高等学校科学研究项目(NJZZ18001)和内蒙古草原英才,内蒙古自治区高等学校青年科技英才支持计划(NJYT-17-A07)资助.

唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486.

Tang Siqin, Li Hong, Dong ZiMing, Zhao ZhiHui. THE ERROR ESTIMATES OF THE STABILIZED TIME DISCONTINUOUS SPACE-TIME FINITE ELEMENT SOLUTIONS FOR CONVECTION-REACTION-DIFFUSION EQUATIONS[J]. Mathematica Numerica Sinica, 2020, 42(4): 472-486.

THE ERROR ESTIMATES OF THE STABILIZED TIME DISCONTINUOUS SPACE-TIME FINITE ELEMENT SOLUTIONS FOR CONVECTION-REACTION-DIFFUSION EQUATIONS

Tang Siqin, Li Hong, Dong ZiMing, Zhao ZhiHui   

  1. School of Mathematical Science, Inner Mongolia University, Hohhot 010021, China
  • Received:2018-12-10 Online:2020-11-15 Published:2020-11-15
在流线迎风Petrov-Galerkin(SUPG)稳定化有限元数值格式的基础上,结合时间方向的变分离散,构造对流反应扩散方程的稳定化时间间断时空有限元格式.该类格式在工程上有一些数值模拟应用,但相关文献没有看到类似数值格式的理论证明.本文以Radau点为节点,构造时间方向的Lagrange插值多项式,证明了稳定化有限元解的稳定性,时间最大模、空间L2(Ω)-模误差估计.文中利用插值多项式和有限元方法相结合的技巧,解耦时空变量,去掉了时空网格的限制条件,提供了时间间断稳定化时空有限元方法的理论证明思路,克服了因时空变量统一导致的实际计算时的复杂性.
A kind of stabilized time discontinuous space-time finite element formulations are presented for the convection-reaction-diffusion equations. The stabilized schemes considered in this paper are constructed based on the streamline upwind Petrov-Galerkin (SUPG) finite element approximate scheme, combining with the space time finite element method in which the discrete time variation form was used. The theoretical proofs of the scheme cannot be found in relative references, although there are some simulations in practical applications. In this paper, we give the proofs of stability and error estimates in the maximum norm of time and L2(Ω)-norm of spatial by taking the Radau points as the interpolation nodes of Lagrange interpolation polynomials. The temporal and spacial variants are decoupled, the restricted conditions on the space-time meshes are removed by taking advantages of the techniques of combining the interpolation polynomials with the finite element method. The process of of proof in this paper provides a new idea of theoretical analysis for the stabilized space time finite element method permitting discontinuities in time. And the complexities in practical computations caused by the unifying space and time variables are conquered.

MR(2010)主题分类: 

()
[1] John V, Knobloch P. On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations[J]. I. A review. Computer Methods in Applied Mechanics & Engineering, 2007, 196(17):2197-2215.

[2] Matthies G, Skrzypacz P, Tobiska L. A unified convergence analysis for local projection stabilisations applied to the Oseen problem[J]. Esaim Mathematical Modelling & Numerical Analysis, 2007, 41(4):713-742.

[3] Brooks A N, Hughes T J R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J]. Computer Methods in Applied Mechanics & Engineering, 1982, 32(1):199-259.

[4] Burman E. Consistent SUPG-method for transient transport problems:Stability and convergence[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(17-20):1114-1123.

[5] Frutos J D, García-Archilla B, Novo J. Local Error Estimates for the SUPG Method Applied to Evolutionary Convection-Reaction-Diffusion Equations[J]. Journal of Scientific Computing, 2016, 66(2):528-554.

[6] Naveed Ahmed, Gunar Matthies. Numerical Study of SUPG and LPS Methods Combined with Higher Order Variational Time Discretization Schemes Applied to Time-Dependent Linear Convection-Diffusion-Reaction Equations[J]. J Sci Comput, 2016, 67:988-1018.

[7] John.V, Novo J. Error Analysis of the SUPG Finite Element Discretization of Evolutionary Convection-Diffusion-Reaction Equations[J]. Siam Jounal on Numerical Analysis, 2011, 49(3):1149-1176.

[8] Karakashian O, Makridakis C. A space-time finite element method for the nonlinear Schrödinger equation:the discontinuous Galerkin method[J]. Mathematics of Computation, 1999, 36(6):1779-1807.

[9] Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods, 1994.

[10] Ciarlet P G, The finite element method for elliptic problems. Mathematics of Computation, 2002.
[1] 王金凤, 尹保利, 刘洋, 李宏. 四阶分数阶扩散波动方程的两网格混合元快速算法[J]. 计算数学, 2022, 44(4): 496-507.
[2] 李步扬. 曲率流的参数化有限元逼近[J]. 计算数学, 2022, 44(2): 145-162.
[3] 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505.
[4] 陈明卿, 谢小平. 随机平面线弹性问题的一类弱Galerkin方法[J]. 计算数学, 2021, 43(3): 279-300.
[5] 董自明, 李宏, 赵智慧, 唐斯琴. 对流扩散反应方程的局部投影稳定化连续时空有限元方法[J]. 计算数学, 2021, 43(3): 367-387.
[6] 曾玉平, 翁智峰, 胡汉章. 简化摩擦接触问题的对称弱超内罚间断Galerkin方法的先验和后验误差估计[J]. 计算数学, 2021, 43(2): 162-176.
[7] 房明娟, 阳莺, 唐鸣. 稳态Poisson-Nernst-Planck方程的残量型后验误差估计[J]. 计算数学, 2021, 43(1): 17-32.
[8] 王然, 张怀, 康彤. 求解带有非线性边界条件的涡流方程的A-φ解耦有限元格式[J]. 计算数学, 2021, 43(1): 33-55.
[9] 关宏波, 洪亚鹏. 抛物型界面问题的变网格有限元方法[J]. 计算数学, 2020, 42(2): 196-206.
[10] 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116.
[11] 贾仲孝, 孙晓琳. 计算矩阵函数双线性形式的Krylov子空间算法的误差分析[J]. 计算数学, 2020, 42(1): 117-130.
[12] 武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213.
[13] 葛志昊, 吴慧丽. 体积约束的非局部扩散问题的后验误差分析[J]. 计算数学, 2018, 40(1): 107-116.
[14] 程强, 熊向团. 时间分数次扩散方程反演源项问题的迭代正则化方法[J]. 计算数学, 2017, 39(3): 295-308.
[15] 单炜琨, 李会元. 双调和算子特征值问题的混合三角谱元方法[J]. 计算数学, 2017, 39(1): 81-97.
阅读次数
全文


摘要