唐斯琴, 李宏, 董自明, 赵智慧
唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486.
Tang Siqin, Li Hong, Dong ZiMing, Zhao ZhiHui. THE ERROR ESTIMATES OF THE STABILIZED TIME DISCONTINUOUS SPACE-TIME FINITE ELEMENT SOLUTIONS FOR CONVECTION-REACTION-DIFFUSION EQUATIONS[J]. Mathematica Numerica Sinica, 2020, 42(4): 472-486.
Tang Siqin, Li Hong, Dong ZiMing, Zhao ZhiHui
MR(2010)主题分类:
分享此文:
[1] John V, Knobloch P. On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations[J]. I. A review. Computer Methods in Applied Mechanics & Engineering, 2007, 196(17):2197-2215.[2] Matthies G, Skrzypacz P, Tobiska L. A unified convergence analysis for local projection stabilisations applied to the Oseen problem[J]. Esaim Mathematical Modelling & Numerical Analysis, 2007, 41(4):713-742.[3] Brooks A N, Hughes T J R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[J]. Computer Methods in Applied Mechanics & Engineering, 1982, 32(1):199-259.[4] Burman E. Consistent SUPG-method for transient transport problems:Stability and convergence[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(17-20):1114-1123.[5] Frutos J D, García-Archilla B, Novo J. Local Error Estimates for the SUPG Method Applied to Evolutionary Convection-Reaction-Diffusion Equations[J]. Journal of Scientific Computing, 2016, 66(2):528-554.[6] Naveed Ahmed, Gunar Matthies. Numerical Study of SUPG and LPS Methods Combined with Higher Order Variational Time Discretization Schemes Applied to Time-Dependent Linear Convection-Diffusion-Reaction Equations[J]. J Sci Comput, 2016, 67:988-1018.[7] John.V, Novo J. Error Analysis of the SUPG Finite Element Discretization of Evolutionary Convection-Diffusion-Reaction Equations[J]. Siam Jounal on Numerical Analysis, 2011, 49(3):1149-1176.[8] Karakashian O, Makridakis C. A space-time finite element method for the nonlinear Schrödinger equation:the discontinuous Galerkin method[J]. Mathematics of Computation, 1999, 36(6):1779-1807.[9] Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods, 1994.[10] Ciarlet P G, The finite element method for elliptic problems. Mathematics of Computation, 2002. |
[1] | 王金凤, 尹保利, 刘洋, 李宏. 四阶分数阶扩散波动方程的两网格混合元快速算法[J]. 计算数学, 2022, 44(4): 496-507. |
[2] | 李步扬. 曲率流的参数化有限元逼近[J]. 计算数学, 2022, 44(2): 145-162. |
[3] | 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505. |
[4] | 陈明卿, 谢小平. 随机平面线弹性问题的一类弱Galerkin方法[J]. 计算数学, 2021, 43(3): 279-300. |
[5] | 董自明, 李宏, 赵智慧, 唐斯琴. 对流扩散反应方程的局部投影稳定化连续时空有限元方法[J]. 计算数学, 2021, 43(3): 367-387. |
[6] | 曾玉平, 翁智峰, 胡汉章. 简化摩擦接触问题的对称弱超内罚间断Galerkin方法的先验和后验误差估计[J]. 计算数学, 2021, 43(2): 162-176. |
[7] | 房明娟, 阳莺, 唐鸣. 稳态Poisson-Nernst-Planck方程的残量型后验误差估计[J]. 计算数学, 2021, 43(1): 17-32. |
[8] | 王然, 张怀, 康彤. 求解带有非线性边界条件的涡流方程的A-φ解耦有限元格式[J]. 计算数学, 2021, 43(1): 33-55. |
[9] | 关宏波, 洪亚鹏. 抛物型界面问题的变网格有限元方法[J]. 计算数学, 2020, 42(2): 196-206. |
[10] | 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116. |
[11] | 贾仲孝, 孙晓琳. 计算矩阵函数双线性形式的Krylov子空间算法的误差分析[J]. 计算数学, 2020, 42(1): 117-130. |
[12] | 武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213. |
[13] | 葛志昊, 吴慧丽. 体积约束的非局部扩散问题的后验误差分析[J]. 计算数学, 2018, 40(1): 107-116. |
[14] | 程强, 熊向团. 时间分数次扩散方程反演源项问题的迭代正则化方法[J]. 计算数学, 2017, 39(3): 295-308. |
[15] | 单炜琨, 李会元. 双调和算子特征值问题的混合三角谱元方法[J]. 计算数学, 2017, 39(1): 81-97. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||