• 论文 • 上一篇    下一篇

求解一类分块二阶线性方程组的QHSS迭代方法

李天怡, 陈芳   

  1. 北京信息科技大学理学院, 北京 100192
  • 收稿日期:2020-01-02 出版日期:2021-02-15 发布日期:2021-02-04
  • 通讯作者: 陈芳, chenfreesky@126.com
  • 基金资助:
    国家自然科学基金(No.11501038)和北京市教育委员会科技计划项目(Nos.KM201911232010,KM201811232020)资助.

李天怡, 陈芳. 求解一类分块二阶线性方程组的QHSS迭代方法[J]. 计算数学, 2021, 43(1): 110-117.

Li Tianyi, Chen Fang. QHSS ITERATION METHOD FOR A CLASS OF BLOCK TWO-BY-TWO LINEAR SYSTEMS[J]. Mathematica Numerica Sinica, 2021, 43(1): 110-117.

QHSS ITERATION METHOD FOR A CLASS OF BLOCK TWO-BY-TWO LINEAR SYSTEMS

Li Tianyi, Chen Fang   

  1. School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China
  • Received:2020-01-02 Online:2021-02-15 Published:2021-02-04
本文将QHSS迭代方法运用于求解一类分块二阶线性方程组. 通过适当地放宽QHSS迭代方法的收敛性条件,我们给出了用QHSS迭代方法求解一类分块二阶线性方程组的具体迭代格式,并证明了当系数矩阵中的(1,1)块对称半正定时该QHSS迭代方法的收敛性.我们还用数值实验验证了QHSS迭代方法的可行性和有效性.
We use the QHSS iteration method to solve a class of block two-by-two linear systems. By properly relaxing the convergence conditions of the QHSS iteration method, we give an alternative QHSS iteration scheme for solving the block two-by-two linear systems, and prove that when the (1, 1) block of the coefficient matrix is symmetric and positive semidefinite, this QHSS iteration method is also convergent under certain conditions. We also use the numerical experiments to verify the feasibility and effectiveness of the QHSS iteration method.

MR(2010)主题分类: 

()
[1] Arridag S R. Optical tomography in medical imaging[J]. Inverse Problems, 1999, 15:R41-R93.
[2] Bai Z Z. On SSOR-like preconditioners for non-Hermitian positive definite matrices[J]. Numerical Linear Algebra with Applications, 2016, 23:37-60.
[3] Bai Z Z, Golub G H and Ng M K. Hermitian and skew-Hermitian splitting methods for nonHermitian positive definite linear systems[J]. SIAM Journal on Matrix Analysis and Applications, 2003, 24:603-626.
[4] Bai Z Z, Benzi M and Chen F. Modified HSS iteration methods for a class of complex symmetric linear systems[J]. Computing, 2010, 111:87-93.
[5] Bai Z Z, Benzi M and Chen F. On preconditioned MHSS iteration methods for complex symmetric linear systems[J]. Numerical Algorithms, 2011, 56:297-317.
[6] Bai Z Z, Benzi M, Chen F and Wang Z Q. Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems[J]. IMA Journal of Numerical Analysis, 2013, 33:343-369.
[7] Bai Z Z. Quasi-HSS iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts[J]. Numerical Linear Algebra with Applications, 2018, e2116:1-19.
[8] Benzi M and Bertaccini D. Block preconditioning of real-valued iterative algorithms for complex linear systems[J]. IMA Journal of Numerical Analysis, 2008, 28:598-618.
[9] Bertaccini D. Efficient preconditioning for sequences of parametric complex symmetric linear systems[J]. Electronic Transactions on Numerical Analysis, 2004, 18:49-64.
[10] Poirier B. Efficient preconditioning scheme for block partitioned matrices with structured sparsity[J]. Numerical Linear Algebra with Applications, 2000, 7:715-726.
[1] 潘春平. 关于非Hermitian正定线性代数方程组的超松弛HSS方法[J]. 计算数学, 2022, 44(4): 481-495.
[2] 邓定文, 赵紫琳. 求解二维Fisher-KPP方程的一类保正保界差分格式及其Richardson外推法[J]. 计算数学, 2022, 44(4): 561-584.
[3] 郭洁, 万中. 求解大规模极大极小问题的光滑化三项共轭梯度算法[J]. 计算数学, 2022, 44(3): 324-338.
[4] 包学忠, 胡琳, 产蔼宁. 线性随机变时滞微分方程指数Euler方法的收敛性和稳定性[J]. 计算数学, 2022, 44(3): 339-353.
[5] 霍振阳, 张静娜, 黄健飞. 多项Caputo分数阶随机微分方程的Euler-Maruyama方法[J]. 计算数学, 2022, 44(3): 354-367.
[6] 朱禹, 陈芳. 离散空间分数阶非线性薛定谔方程的MHSS型迭代方法[J]. 计算数学, 2022, 44(3): 368-378.
[7] 李步扬. 曲率流的参数化有限元逼近[J]. 计算数学, 2022, 44(2): 145-162.
[8] 宋珊珊, 李郴良. 求解张量互补问题的一类光滑模系矩阵迭代方法[J]. 计算数学, 2022, 44(2): 178-186.
[9] 邵新慧, 祁猛. 求解M-张量方程的两种新型算法[J]. 计算数学, 2022, 44(2): 206-216.
[10] 杨学敏, 牛晶, 姚春华. 椭圆型界面问题的破裂再生核方法[J]. 计算数学, 2022, 44(2): 217-232.
[11] 马玉敏, 蔡邢菊. 求解带线性约束的凸优化的一类自适应不定线性化增广拉格朗日方法[J]. 计算数学, 2022, 44(2): 272-288.
[12] 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33.
[13] 邵新慧, 亢重博. 基于分数阶扩散方程的离散线性代数方程组迭代方法研究[J]. 计算数学, 2022, 44(1): 107-118.
[14] 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443.
[15] 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321.
阅读次数
全文


摘要