非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性

余妍妍, 代新杰, 肖爱国

计算数学 ›› 2022, Vol. 44 ›› Issue (1) : 19-33.

PDF(542 KB)
PDF(542 KB)
计算数学 ›› 2022, Vol. 44 ›› Issue (1) : 19-33. DOI: 10.12286/jssx.j2020-0748
论文

非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性

    余妍妍, 代新杰, 肖爱国
作者信息 +

CONVERGENCE AND STABILITY OF THE CANONICAL EM SPLITTING METHOD FOR NONAUTONOMOUS STIFF STOCHASTIC DIFFERENTIAL EQUATIONS

    Yu Yanyan, Dai Xinjie, Xiao Aiguo
Author information +
文章历史 +

摘要

本文研究了数值求解非自治随机微分方程的正则Euler-Maruyama分裂(CEMS)方法,该方程的漂移项系数带有刚性且允许超线性增长,扩散项系数满足全局Lipschitz条件.首先,证明了CEMS方法的强收敛性及收敛速度.其次,证明了在适当条件下CEMS方法是均方稳定的.进一步,利用离散半鞅收敛定理,研究了CEMS方法的几乎必然指数稳定性.结果表明,CEMS方法在漂移系数的刚性部分满足单边Lipschitz条件下可保持几乎必然指数稳定性.最后通过数值实验,检验了CEMS方法的有效性并证实了我们的理论结果.

Abstract

This paper studies the canonical Euler——Maruyama splitting (CEMS) method for numerically solving non-autonomous stochastic differential equations. The drift coefficient of the equation is stiff and allows super-linear growth, and the diffusion coefficient satisfies the global Lipschitz condition. First, we prove the CEMS method is strongly convergent and discuss the convergence rate. Second, it is proved that the CEMS method is stable in mean square sense under mild conditions. Further, using the discrete semi-martingale convergence theorem, the almost surely exponential stability of the CEMS method is studied. The results show that the CEMS method can preserve almost surely exponential stability when the stiff part of drift cofficient satisfies the one-sided Lipschitz condition. Finally, numerical experiments verify the effectiveness of the CEMS method and confirm our theoretical results.

关键词

非自治刚性随机微分方程 / 正则Euler-Maruyama分裂方法 / 收敛性 / 稳定性

Key words

Non-autonomous stiff stochastic differential equations / Canonical Euler-Maruyama splitting method / Convergence / Stability

引用本文

导出引用
余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性. 计算数学, 2022, 44(1): 19-33 https://doi.org/10.12286/jssx.j2020-0748
Yu Yanyan, Dai Xinjie, Xiao Aiguo. CONVERGENCE AND STABILITY OF THE CANONICAL EM SPLITTING METHOD FOR NONAUTONOMOUS STIFF STOCHASTIC DIFFERENTIAL EQUATIONS. Mathematica Numerica Sinica, 2022, 44(1): 19-33 https://doi.org/10.12286/jssx.j2020-0748

参考文献

[1] Van Kampen N G. Stochastic Processes in Physics and Chemistry[M]. Netherlands, 1992.
[2] Bodo B A, Thompson M E, Unny T E. A review on stochastic differential equations for application in hydrology[J]. Stoch. Hydrol. Hydraul., 1987, 1:81-100.
[3] Maruyama G. Continuous Markov processes and stochastic equations[J]. Rend. Circ. Mat. Palermo., 1955, 4:48-90.
[4] Milstein G. Approximate integration of stochastic differential equations[J]. Theory Probab. Appl., 1974, 19:557-562.
[5] Kloeden P E, Platen E. Numerical solution of stochastic differential equations[M]. Berlin:Springer, 1992.
[6] Kloeden P E, Platen E, Schurz H. The numerical solution of non-linear stochastic dynamical systems:A brief introduction[J]. Int. J. Bif. Chaos., 1991, 1:277-286.
[7] Hutzenthaler M, Jentzen A, Kloeden P E. Strong and weak divergence in finite time of Euler's method for SDEs with non-globally Lipschitz continuous coefficients[J]. Proc. Roy. Soc. A, 2011, 467:1563-1576.
[8] Hutzenthaler M, Jentzen A, Kloeden P E. Strong convergence of an explicit numerical method for SDEs with non-globally Lipschitz continuous coefficients[J]. 2012, arXiv:1010.3756v1.
[9] Wang X J, Gan S Q. The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients[J]. J. Difference Equ. Appl., 2013, 19(3):466-490.
[10] Mao X R. The truncated Euler-Maruyama method for stochastic differential equations[J]. J. Comput. Appl. Math., 2015, 290:370-384.
[11] Guo Q, Liu W, Mao X R, Yue R X. The truncated Milstein method for stochastic differential equations with commutative noise[J]. J. Comput. Appl. Math., 2018, 338:298-310.
[12] Li S F, Li Y F. B-convergence theory of Runge-Kutta methods for stiff Volterra functional differential equations with infinite integration interval[J]. SIAM J. Numer. Anal., 2015, 53(6):2570-2583.
[13] Higham D J. Mean-square and asymptotic stability of the stochastic theta method[J]. SIAM J. Numer. Anal., 2000, 38(3):753-769.
[14] Kloeden P E, Platen E, Schurz H. The numerical solution of nonlinear stochastic dynamical systems:a brief introduction[J]. Int. J. Bifurcat Chaos., 1991, 01(02):277-286.
[15] Saito Y, Mitsui T. Stability analysis of numerical schemes for stochastic differential equations[J]. SIAM J. Numer. Anal., 1996, 33(6):2254-2267.
[16] Milstein G N, Repin Y M, Tretyakov M V. Numerical methods for stochastic systems preserving symplectic structure[J]. SIAM J. Numer. Anal., 2002, 40(4):1583-1604.
[17] Yue C. Exponential mean-square stability of the improved split-step theta methods for non-autonomous stochastic differential equations[J]. Sci. China Math., 2017, 60:735-744.
[18] Burrage K, Tian T. The composite Euler method for stiff stochastic differential equations[J]. J. Comput. Appl. Math., 2001, 131(1):407-426.
[19] Kahl C, Schurz H. Balanced Milstein methods for ordinary SDEs[J]. Monte Carlo Methods Appl., 2006, 12(2):143-170.
[20] Milstein G N, Platen E, Schurz H. Balanced implicit methods for stiff stochastic systems[J]. SIAM J. Numer. Anal., 1998, 35(3):1010-1019.
[21] Burrage K, Tian T. The composite Euler method for stiff stochastic differential equations[J]. J. Comput. Appl. Math., 2001, 131(1):407-426.
[22] Omar M A, Aboul-Hassan A-K, Rabia S. The composite Milstein methods for the numerical solution of Stratonovich stochastic differential equations[J]. Appl. Math. Comput., 2009, 215(2):727-745.
[23] Tian T H, Burrage K. Two-stage stochastic Runge-Kutta methods for stochastic differential equations[J]. BIT, 2002, 42:625-643.
[24] Tian T, Burrage K. Implicit Taylor methods for stiff stochastic differential equations[J]. Appl. Numer. Math., 2001, 38(1):167-185.
[25] Burrage K, Burrage P, Tian T. Numerical methods for strong solutions of stochastic differential equations:an overview[J]. Proc. Roy. Soc. A, 2004, 460(2041):373-402.
[26] Xie Y, Zhang C J. Compensated split-step balanced methods for nonlinear stiff SDEs with jump-diffusion and piecewise continuous arguments[J]. Sci. China Math., 2020, 63:1-22.
[27] Wang X J, Gan S Q, Wang D S. A family of fully implicit Milstein methods for stiff stochastic differential equations with multiplicative noise[J]. BIT, 2012, 52:741-772.
[28] Li S F. Canonical Euler splitting method for nonlinear composite stiff evolution equations[J]. Appl. Math. Comput., 2016, 289:220-236.
[29] Gan S Q, Xiao A G, Wang D S. Stability of analytical and numerical solutions of nonlinear stochastic delay differential equations[J]. J. Comput. Appl. Math., 2014, 268(1):5-22.
[30] Huang C M, Gan S Q, Wang D S. Delay-dependent stability analysis of numerical methods for stochastic delay differential equations[J]. J. Comput. Appl. Math., 2012, 236(14):3514-3527.
[31] Huang C M. Exponential mean square stability of numerical methods for systems of stochastic differential equations[J]. J. Comput. Appl. Math., 2012, 236(16):4016-4026.
[32] Mao X R. Stochastic Differential Equations and Applications[M]. Cambridge:Woodhead Publishing, 2007.
[33] Mao X R, Rassias M J. Khasminskii-type theorems for stochastic differential delay equations[J]. Stoch. Anal. Appl., 2005, 23(5):1045-1069.
[34] Mao X R. Almost sure exponential stability in the numerical simulation of stochastic differential equations[J]. SIAM J. Numer. Anal., 2015, 53(1):370-389.
[35] Mao X R. LaSalle-type theorems for stochastic differential delay equations[J]. J. Math. Anal. Appl., 1999, 236(2):350-369.
[36] Mao X R. A note on the LaSalle-type theorems for stochastic differential delay equations[J]. J. Math. Anal. Appl., 2002, 268(1):125-142.
[37] Higham D J, Kloeden P E. Numerical methods for nonlinear stochastic differential equations with jumps[J]. Numer. Math., 2005, 101(1):101-119.
[38] Wu F K, Mao X R, Szpruch L. Almost sure exponential stability of numerical solutions for stochastic delay differential equations[J]. Numer. Math., 2010, 115(4):681-697.
[39] Hairer E, Wanner G. Solving Ordinary Differential Equations Ⅱ:Stiff and Differential Algebraic Problems[M]. Springer Berl., 1996.
[40] Mao X R, Szpruch L. Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients[J]. J. Comput. Appl. Math., 2013, 238(1):14-28.
[41] 彭捷, 代新杰, 肖爱国, 卜玮平. 中立型随机延迟微分方程分裂步θ方法的强收敛性[J]. 计算数学, 2020, 42(1):18-38.
[42] 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3):301-321.

基金

国家自然科学基金(12071403)和湖南省教育厅科学研究项目(21A0108)资助
PDF(542 KB)

707

Accesses

0

Citation

Detail

段落导航
相关文章

/