潘春平
潘春平. 关于非Hermitian正定线性代数方程组的超松弛HSS方法[J]. 计算数学, 2022, 44(4): 481-495.
Pan Chunping. ON THE OVER RELAXATION HSS METHOD FOR NON HERMITIAN POSITIVE DEFINITE LINEAR ALGEBRAIC EQUATIONS[J]. Mathematica Numerica Sinica, 2022, 44(4): 481-495.
Pan Chunping
MR(2010)主题分类:
分享此文:
[1] Saad Y, Schultz M.H. GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput, 1986, 7:856-869. [2] Young D M. Iterative Solutions of Large Linear Systems[M]. New York:Academic Press 1971. [3] Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J Matrix Anal Appl, 2003, 24:603-626. [4] Benzi M, Golub G H. A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl, 2004, 26:20-41. [5] Bai Z Z, Golub G H, Pan J Y. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. Numer Math, 2004, 98:1-32. [6] Bai Z Z, Golub G H, Ng M K. On successive overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations[J]. Numer Linear Algebra Appl, 2007, 14:319-335. [7] Bai Z Z, Golub G H, Li C K. Convergence properties of preconditioned Hermitian and skewHermitian splitting methods for non-Hermitian positive semidefinite matrices[J].Math.Comput, 2007, 76:287-298. [8] Bai Z Z, Golub G H, Li C K. Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices[J]. SIAM J Sci Comput, 2006, 28:583-603. [9] Li L, Huang T Z, Liu X P.Modified Hermitian and skew-Hermitian splitting methods for nonHermitian positive-definite linear systems[J].Numer Linear Algebra Appl, 2007, 14:217-235. [10] Bai Z Z, Golub G H, Lu L Z, Yin J F.Block triangular and skew-Hermitian splitting methods for positive-definite linear systems[J]. SIAM J Sci Comput, 2005, 26:844-863. [11] Bai Z Z, Golub G H. Accelerated Hermitian and skew-Hermitian splitting methods for saddle point problems[J]. IMA J Numer Anal 2007, 27:1-23. [12] Li L, Huang T Z, Liu X P.Asymmetric Hermitian and skew-Hermitian splitting methods for positive definite linear systems[J]. Compu. Math. Appl, 2007, 54:147-159. [13] Bai Z Z. Optimal parameters in the HSS-like methods for saddle-point problems[J]. Numer Linear Algebra Appl, 2009, 16:447-479. [14]潘春平.关于鞍点问题的预处理HSS-SOR交替分裂迭代方法[J]. 高校应用数学学报, 2012, 27(4):456-464. [15]潘春平.鞍点问题的预处理HSS-SOR二级分裂迭代方法[J]. 高校应用数学学报, 2013, 28(3):367-378. [16]潘春平, 王红玉, 曹文方. 非Hermitian正定线性方程组的外推的HSS迭代方法[J]. 计算数学, 2019, 41(1):52-65. |
[1] | 朱禹, 陈芳. 离散空间分数阶非线性薛定谔方程的MHSS型迭代方法[J]. 计算数学, 2022, 44(3): 368-378. |
[2] | 宋珊珊, 李郴良. 求解张量互补问题的一类光滑模系矩阵迭代方法[J]. 计算数学, 2022, 44(2): 178-186. |
[3] | 邵新慧, 祁猛. 求解M-张量方程的两种新型算法[J]. 计算数学, 2022, 44(2): 206-216. |
[4] | 李天怡, 陈芳. 求解一类分块二阶线性方程组的QHSS迭代方法[J]. 计算数学, 2021, 43(1): 110-117. |
[5] | 吴敏华, 李郴良. 求解带Toeplitz矩阵的线性互补问题的一类预处理模系矩阵分裂迭代法[J]. 计算数学, 2020, 42(2): 223-236. |
[6] | 戴平凡, 李继成, 白建超. 解线性互补问题的预处理加速模Gauss-Seidel迭代方法[J]. 计算数学, 2019, 41(3): 308-319. |
[7] | 潘春平, 王红玉, 曹文方. 非Hermitian正定线性方程组的外推的HSS迭代方法[J]. 计算数学, 2019, 41(1): 52-65. |
[8] | 曾闽丽, 张国凤. 速度追踪问题中鞍点系统的新分裂迭代[J]. 计算数学, 2016, 38(4): 354-371. |
[9] | 张凯院, 耿小姣, 聂玉峰. 一类Riccati方程组对称自反解的两种迭代算法[J]. 计算数学, 2016, 38(2): 161-170. |
[10] | 潘春平. 关于Katz指标的二级分裂迭代方法[J]. 计算数学, 2015, 37(4): 390-400. |
[11] | 潘春平 . 关于PageRank的广义二级分裂迭代方法[J]. 计算数学, 2014, 36(4): 427-436. |
[12] | 潘春平. 关于鞍点问题的广义预处理HSS-SOR交替分裂迭代方法[J]. 计算数学, 2013, 35(4): 353-364. |
[13] | 廖安平, 段雪峰, 沈金荣. 矩阵方程X+A^{*}X^{-q}A=Q(q\geq 1)的Hermitian正定解[J]. 计算数学, 2008, 30(4): 369-378. |
[14] | 苏京勋,刘继军,. 一类抛物型方程系数反问题的分裂算法[J]. 计算数学, 2008, 30(1): 99-12. |
[15] | 高东杰,张玉海,. 矩阵方程X-A~*X~qA=Q(q>0)的Hermite正定解[J]. 计算数学, 2007, 29(1): 73-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||