孔令畅1, 魏科洋1, 周学林2,3, 李姣芬4
孔令畅, 魏科洋, 周学林, 李姣芬. 广义特征值极小扰动问题的一类黎曼共轭梯度法[J]. 计算数学, 2022, 44(4): 508-533.
Kong Lingchang, Wei Keyang, Zhou Xuelin, Li Jiaofen. A RIEMANNIAN CONJUGATE GRADIENT APPROACH FOR SOLVING THE GENERALIZED EIGENVALUE PROBLEM WITH MINIMAL PERTURBATION[J]. Mathematica Numerica Sinica, 2022, 44(4): 508-533.
Kong Lingchang1, Wei Keyang1, Zhou Xuelin2,3, Li Jiaofen4
MR(2010)主题分类:
分享此文:
[1] Boutry G, Elad M, Golub G H, Milanfar P. The generalized eigenvalue problem for nonsquare pencils using a minimal perturbation approach[J]. SIAM Journal on Matrix Analysis and Applications, 2005, 27(2):582-601. [2] Chu D, Golub G H. On a generalized eigenvalue problem for nonsquare pencils[J]. SIAM Journal on Matrix Analysis and Applications, 2006, 28(3):770-787. [3] Kressner D, Mengi E, Nakíc I, Truhar N. Generalized eigenvalue problems with specified eigenvalues[J]. IMA Journal of Numerical Analysis, 2014, 34(2):480-501. [4] Lecumberri P, Gómez M, Carlosena A. Generalized eigenvalues of nonsquare pencils with structure[J]. SIAM Journal on Matrix Analysis and Applications, 2008, 30(1):41-55. [5] Ito S, Murota K. An algorithm for the generalized eigenvalue problem for nonsquare matrix pencils by minimal perturbation approach[J]. SIAM Journal on Matrix Analysis and Applications, 2016, 37(1):409-419. [6] Sun J. Matrix perturbation analysis[M]. Science Press, 2001. [7] Li J F, Li W, Vong S W, Luo Q L, Xiao M. A Riemannian optimization approach for solving the generalized eigenvalue problem for nonsquare matrix pencils[J]. Journal of Scientific Computing, 2020, 82(3):1-43. [8] Absil P A, Mahony R, Sepulchre R. Optimization Algorithms on Matrix Manifolds[M]. Princeton University Press, 2009. [9] Sato H. Riemannian conjugate gradient method for complex singular value decomposition problem[J]. Proceedings of the IEEE Conference on Decision and Control, 2015, 2015:5849-5854. [10] Dai Y H. A nonmonotone conjugate gradient algorithm for unconstrained optimization[J]. Journal of System Science and Complexity, 2002, 15:139-145. [11] Zhang L, Zhou W J, Li D H. Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search[J]. Numerische Mathematik, 2006, 104(4):561-572. [12] Sato H, Iwai T. A Riemannian optimization approach to the matrix singular value decomposition[J]. SIAM Journal on Optimization, 2013, 23(1):188-212. [13] Vandereycken B. Low-rank matrix completion by Riemannian optimization[J]. SIAM Journal on Optimization, 2013, 23(2):1214-1236. [14] Sato H, Iwai T. A new, globally convergent Riemannian conjugate gradient method[J]. Optimization, 2015, 64(4):1011-1031. [15] Sato H. A Dai-Yuan-type Riemannian conjugate gradient method with the weak Wolfe conditions[J]. Computational optimization and Applications, 2016, 64(1):101-118. [16] Sato, Hiroyuki. A Dai-Yuan-type Riemannian conjugate gradient method with the weak Wolfe conditions[J]. Computational optimization and applications, 2016, 64(1):101-118. [17] Zhao Z, Jin X Q, Bai Z J. A geometric nonlinear conjugate gradient method for stochastic inverse eigenvalue problems[J]. SIAM Journal on Numerical Analysis, 2016, 54(4):2015-2035. [18] Yao T T, Bai Z J, Zhao Z, Ching W K. A Riemannian Fletcher-Reeves conjugate gradient method for doubly stochastic inverse eigenvalue problems[J]. SIAM Journal on Matrix Analysis and Applications, 2016, 37(1):215-234. [19] Yao T T, Bai Z J, Zhao Z. A Riemannian variant of the Fletcher-Reeves conjugate gradient method for stochastic inverse eigenvalue problems with partial eigendata[J]. Numerical Linear Algebra with Applications, 2019, 26(2):e2221. [20] Zhu X. A Riemannian conjugate gradient method for optimization on the Stiefel manifold[J]. Computational Optimization and Applications, 2017, 67(1):73-110. [21] Song G J, Wang X Z, Ng M K. Riemannian conjugate gradient descent method for third-crder tensor completion[J]. arXiv preprint arXiv:2011.11417, 2020. [22] Jiang Y L, Xu K L. Riemannian modified Polak-Ribière-Polyak conjugate gradient order reduced model by tensor techniques[J]. SIAM Journal on Matrix Analysis and Applications, 2020, 41(2):432-463. [23] Sakai H, Iiduka H. Hybrid Riemannian conjugate gradient methods with global convergence properties[J]. Computational Optimization and Applications, 2020, 77(3):811-830. [24] Sato H. Riemannian Optimization and Its Applications[M]. Springer Nature, 2021. [25] Wen Z, Yin W. A feasible method for optimization with orthogonality constraints[J]. Mathematical Programming, 2013, 142(1-2):397-434. [26] Hu J, Liu X, Wen Z W, Yuan Y X. A brief introduction to manifold optimization[J]. Journal of the Operations Research Society of China, 2020, 8(2):199-248. [27] Zhang L, Zhou W, Li D H. A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence[J]. IMA Journal of Numerical Analysis, 2006, 26(4):629-640. [28] Sato H, Iwai T. A new, globally convergent Riemannian conjugate gradient method[J]. Optimization, 2013, 64(4):1011-1031. [29] Li J F, Li W, Duan X F, Xiao M. Newton's method for the parameterized generalized eigenvalue problem with nonsquare matrix pencils[J]. Advances in Computational Mathematics, 2021, 47(2):1-50. [30] Boumal N, Mishra B, Absil P A, Sepulchre R. Manopt, a Matlab toolbox for optimization on manifolds[J]. Journal of Machine Learning Research, 2014, 15(1):1455-1459. |
[1] | 刘冬冬, 陈艳美, 黎稳. 关于正规矩阵对广义特征值新的扰动界限[J]. 计算数学, 2015, 37(2): 113-122. |
[2] | 陈小山. 关于特征值与广义特征值的Bauer-Fike型相对扰动界[J]. 计算数学, 2008, 30(4): 409-416. |
[3] | 裘渔洋,张振跃,. 对称约束平衡Procrustes问题的一个简单解法[J]. 计算数学, 2007, 29(3): 322-324. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||