• 青年评述 • 下一篇
胡婧玮
胡婧玮. 非线性玻尔兹曼方程的傅里叶谱方法[J]. 计算数学, 2022, 44(3): 289-304.
Hu Jingwei. FOURIER SPECTRAL METHODS FOR NONLINEAR BOLTZMANN EQUATIONS[J]. Mathematica Numerica Sinica, 2022, 44(3): 289-304.
Hu Jingwei
MR(2010)主题分类:
分享此文:
[1] Alexandre R, Desvillettes L, Villani C, and Wennberg B. Entropy dissipation and long-range interactions[J]. Arch. Rational Mech. Anal., 2000, 152:327-355. [2] Bird G. Molecular Gas Dynamics and the Direct Simulation of Gas Flows[M]. Clarendon Press, Oxford, 1994. [3] Birdsall C and Langdon A. Plasma Physics via Computer Simulation[M]. CRC Press, 2018. [4] Bobylev A. The Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules. Doklady Akad. Nauk SSSR, 1975, 225:497-516. [5] Bobylev A and Rjasanow S. Fast deterministic method of solving the Boltzmann equation for hard spheres[J]. Eur. J. Mech. B Fluids, 1999, 18:869-887. [6] Cai Z, Fan Y, and Ying L. An entropic Fourier method for the Boltzmann equation[J]. SIAM J. Sci. Comput., 2018, 40:A2858-A2882. [7] Cercignani C. Rarefied Gas Dynamics:From Basic Concepts to Actual Calculations[M]. Cambridge University Press, Cambridge, 2000. [8] Cercignani C, Illner R, and Pulvirenti M. The Mathematical Theory of Dilute Gases[M]. SpringerVerlag, 1994. [9] Dimarco G, Loubere R, Narski J, and Rey T. An efficient numerical method for solving the Boltzmann equation in multidimensions[J]. J. Comput. Phys., 2018, 353:46-81. [10] Dimarco G and Pareschi L. Numerical methods for kinetic equations[J]. Acta Numer., 2014, 23:369-520. [11] Einkemmer L, Hu J, and Ying L. An efficient dynamical low-rank algorithm for the BoltzmannBGK equation close to the compressible viscous flow regime[J]. SIAM J. Sci. Comput., 2021, 43:B1057-B1080. [12] Filbet F. On deterministic approximation of the Boltzmann equation in a bounded domain[J]. Multiscale Model. Simul., 2012, 10:792-817. [13] Filbet F, Hu J, and Jin S. A numerical scheme for the quantum Boltzmann equation with stiff collision terms[J]. ESAIM:Math. Model. Numer. Anal.(M2AN), 2012, 46:443-463. [14] Filbet F and Mouhot C. Analysis of spectral methods for the homogeneous Boltzmann equation[J]. Trans. Amer. Math. Soc., 2011, 363:1947-1980. [15] Filbet F, Mouhot C, and Pareschi L. Solving the Boltzmann equation in NlogN[J]. SIAM J. Sci. Comput., 2006, 28:1029-1053. [16] Filbet F, Pareschi L, and Rey T. On steady-state preserving spectral methods for homogeneous Boltzmann equations[J]. C. R. Math., 2015, 353:309-314. [17] Filbet F and Russo G. High order numerical methods for the space non-homogeneous Boltzmann equation[J]. J. Comput. Phys., 186:457-480, 2003. [18] Gamba I and Haack J. A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit[J]. J. Comput. Phys., 2014, 270:40-57. [19] Gamba I, Haack J, Hauck C, and Hu J. A fast spectral method for the Boltzmann collision operator with general collision kernels[J]. SIAM J. Sci. Comput., 2017, 39:B658-B674. [20] Gamba I and Rjasanow S. Galerkin-Petrov approach for the Boltzmann equation[J]. J. Comput. Phys., 2018, 366:341-365. [21] Gamba I and Tharkabhushanam S. Spectral-Lagrangian methods for collisional models of nonequilibrium statistical states[J]. J. Comput. Phys., 2009, 228:2012-2036. [22] Hesthaven J, Gottlieb S, and Gottlieb D. Spectral Methods for Time-Dependent Problems. Cambridge Monographs on Applied and Computational Mathematics[M]. Cambridge University Press, 2007. [23] Hu J, Huang X, Shen J, and Yang H. A fast Petrov-Galerkin spectral method for the multidimensional Boltzmann equation using mapped Chebyshev functions[J]. SIAM J. Sci. Comput., 2022,44:A1497-A1524. [24] Hu J, Jin S, and Li Q. Asymptotic-preserving schemes for multiscale hyperbolic and kinetic equations. In R. Abgrall and C.-W. Shu, editors, Handbook of Numerical Methods for Hyperbolic Problems:Applied and Modern Issues, chapter 5, pages 103-129. North-Holland, 2017. [25] Hu J and Ma Z. A fast spectral method for the inelastic Boltzmann collision operator and application to heated granular gases[J]. J. Comput. Phys., 2019, 385:119-134. [26] Hu J and Qi K. A fast Fourier spectral method for the homogeneous Boltzmann equation with non-cutoff collision kernels[J]. J. Comput. Phys., 2020, 423:109806. [27] Hu J, Qi K, and Yang T. A new stability and convergence proof of the Fourier-Galerkin spectral method for the spatially homogeneous Boltzmann equation[J]. SIAM J. Numer. Anal., 2021, 59:613-633. [28] Hu J and Wang Y. An adaptive dynamical low rank method for the nonlinear Boltzmann equation[J]. J. Sci. Comput., to appear. [29] Hu J and Ying L. A fast spectral algorithm for the quantum Boltzmann collision operator[J]. Commun. Math. Sci., 2012, 10:989-999. [30] Hu Z and Cai Z. Burnett spectral method for high-speed rarefied gas flows[J]. SIAM J. Sci. Comput., 2020, 42:B1193-B1226. [31] Ibragimov I and Rjasanow S. Numerical solution of the Boltzmann equation on the uniform grid[J]. Computing, 2002, 69:163-186. [32] Jaiswal S, Alexeenko A, and Hu J. A discontinuous Galerkin fast spectral method for the full Boltzmann equation with general collision kernels[J]. J. Comput. Phys., 2019, 378:178-208. [33] Jaiswal S, Alexeenko A, and Hu J. A discontinuous Galerkin fast spectral method for the multispecies Boltzmann equation[J]. Comput. Methods Appl. Mech. Engrg., 2019, 352:56-84. [34] Jaiswal S, Pikus A, Strongrich A, Sebastiao I, Hu J, and Alexeenko A. Quantification of thermallydriven flows in microsystems using Boltzmann equation in deterministic and stochastic contexts[J]. Phys. Fluids (special issue on Direct Simulation Monte Carlo-The Legacy of Graeme A. Bird), 2019, 31:082002. [35] Jin S. Asymptotic-preserving schemes for multiscale physical problems[J]. Acta Numer., 2022, 415-489. [36] Jüngel A. Transport Equations for Semiconductors, volume 773 of Lecture Notes in Physics[M]. Springer, Berlin, 2009. [37] Kitzler G and Schöberl J. A polynomial spectral method for the spatially homogeneous Boltzmann equation[J]. SIAM J. Sci. Comput., 2019, 41:B27-B49. [38] Krook M and Wu T T. Exact solutions of the Boltzmann equation[J]. Phys. Fluids, 1977, 20:1589-1595. [39] Lebedev V and Laikov D. A quadrature formula for the sphere of the 131st algebraic order of accuracy[J]. Doklady Math., 1999, 59:477-481. [40] LeVeque R. Numerical Methods for Conservation Laws. Birkhäuser Verlag, Basel, second edition, 1992. [41] Lu J and Mendl C. Numerical scheme for a spatially inhomogeneous matrix-valued quantum Boltzmann equation[J]. J. Comput. Phys., 2015, 291:303-316. [42] Mouhot C and Pareschi L. Fast algorithms for computing the Boltzmann collision operator[J]. Math. Comp., 2006, 75:1833-1852. [43] Mouhot C and Villani C. Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[J]. Arch. Rational Mech. Anal., 2004, 173:169-212. [44] Naldi G, Pareschi L, and Toscani G, editors. Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences[M]. Birkhäuser Basel, 2010. [45] Pareschi L and Perthame B. A Fourier spectral method for homogeneous Boltzmann equations[J]. Transport Theory Statist. Phys., 1996, 25:369-382. [46] Pareschi L and Russo G. Numerical solution of the Boltzmann equation I:spectrally accurate approximation of the collision operator[J]. SIAM J. Numer. Anal., 2000, 37:1217-1245. [47] Pareschi L and Russo G. On the stability of spectral methods for the homogeneous Boltzmann equation[J]. Transport Theory Statist. Phys., 2000, 29:431-447. [48] Pareschi L, Toscani G, and Villani C. Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit[J]. Numer. Math., 2003, 93:527-548. [49] Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[M]. In Advanced numerical approximation of nonlinear hyperbolic equations, Springer, 1998, 325-432. [50] Uehling E and Uhlenbeck G. Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I[J]. Phys. Rev., 1933, 43:552-561. [51] Villani C. A review of mathematical topics in collisional kinetic theory. In S. Friedlander and D. Serre, editors, Handbook of Mathematical Fluid Mechanics, North-Holland, 2002, I:71-305. [52] Villani C. Mathematics of granular materials[J]. J. Stat. Phys., 2006, 124:781-822. [53] Womersley R. Efficient spherical designs with good geometric properties[M]. In Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan, Springer, 2018, 1243-1285. [54] Wu L, White C, Scanlon T, Reese J, and Zhang Y. Deterministic numerical solutions of the Boltzmann equation using the fast spectral method[J]. J. Comput. Phys., 2013, 250:27-52. |
[1] | 包学忠, 胡琳, 产蔼宁. 线性随机变时滞微分方程指数Euler方法的收敛性和稳定性[J]. 计算数学, 2022, 44(3): 339-353. |
[2] | 贾旻茜, 张宇欣, 游雄. Hamilton系统的对称辛广义加性Runge-Kutta方法[J]. 计算数学, 2022, 44(3): 379-395. |
[3] | 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33. |
[4] | 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505. |
[5] | 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321. |
[6] | 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226. |
[7] | 尚在久, 宋丽娜. 关于辛算法稳定性的若干注记[J]. 计算数学, 2020, 42(4): 405-418. |
[8] | 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309. |
[9] | 胡冬冬, 曹学年, 蒋慧灵. 带非线性源项的双侧空间分数阶扩散方程的隐式中点方法[J]. 计算数学, 2019, 41(3): 295-307. |
[10] | 盛秀兰, 赵润苗, 吴宏伟. 二维线性双曲型方程Neumann边值问题的紧交替方向隐格式[J]. 计算数学, 2019, 41(3): 266-294. |
[11] | 杨晋平, 李志强, 闫玉斌. 求解Riesz空间分数阶扩散方程的一种新的数值方法[J]. 计算数学, 2019, 41(2): 170-190. |
[12] | 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90. |
[13] | 丛玉豪, 胡洋, 王艳沛. 含分布时滞的时滞微分系统多步龙格-库塔方法的时滞相关稳定性[J]. 计算数学, 2019, 41(1): 104-112. |
[14] | 张根根, 唐蕾, 肖爱国. 求解刚性Volterra延迟积分微分方程的隐显单支方法的稳定性与误差分析[J]. 计算数学, 2018, 40(1): 33-48. |
[15] | 陈丰, 吴峻峰. 分布式通信响应优化问题及其内点法求解[J]. 计算数学, 2017, 39(4): 378-392. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||