• 青年评述 •    下一篇

非线性玻尔兹曼方程的傅里叶谱方法

胡婧玮   

  1. 华盛顿大学应用数学系, 美国华盛顿州西雅图市 98195
  • 收稿日期:2021-11-27 出版日期:2022-07-14 发布日期:2022-08-03
  • 作者简介:胡婧玮,现任美国华盛顿大学应用数学系副教授.2006年和2011年分别在北京大学和威斯康星大学麦迪逊分校获学士和博士学位;2011-2014年在德州大学奥斯汀分校从事博士后研究;2014-2021年任普渡大学助理教授和副教授.主要研究领域为空气动理学中的数值方法设计与分析,及它们在多尺度建模,科学工程计算中的应用.曾获美国国家科学基金授予的CAREER Award (2017);现任Kinetic\&Related Models和La Matematica杂志的编委.
  • 基金资助:
    美国国家科学基金DMS-1620250,DMS-2153208和CBET-1854829资助项目.

胡婧玮. 非线性玻尔兹曼方程的傅里叶谱方法[J]. 计算数学, 2022, 44(3): 289-304.

Hu Jingwei. FOURIER SPECTRAL METHODS FOR NONLINEAR BOLTZMANN EQUATIONS[J]. Mathematica Numerica Sinica, 2022, 44(3): 289-304.

FOURIER SPECTRAL METHODS FOR NONLINEAR BOLTZMANN EQUATIONS

Hu Jingwei   

  1. Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
  • Received:2021-11-27 Online:2022-07-14 Published:2022-08-03
玻尔兹曼方程作为空气动理学中最基本的方程之一,是连接微观牛顿力学和宏观连续介质力学的重要桥梁.该方程描述了一个由大量粒子组成的复杂系统的非平衡态时间演化:除了基本的输运项,其最重要的特性是粒子间的相互碰撞由一个高维,非局部且非线性的积分算子来描述,从而给玻尔兹曼方程的数值求解带来非常大的挑战.在过去的二十年间,基于傅里叶级数的谱方法成为了数值求解玻尔兹曼方程的一种很受欢迎且有效的确定性算法.这主要归功于谱方法的高精度及它可以被快速傅里叶变换加速的特质.本文将回顾玻尔兹曼方程的傅里叶谱方法,具体包括方法的导出,稳定性和收敛性分析,快速算法,以及在一大类基于碰撞的空气动理学方程中的推广.
The Boltzmann equation is one of the fundamental equations in kinetic theory, and serves as a basic building block connecting microscopic Newtonian mechanics and macroscopic continuum mechanics. Numerical approximation of the Boltzmann equation is a challenging problem mainly due to its high-dimensional, nonlocal, and nonlinear collision integral. Over the past 20 years, the spectral method based on Fourier series (or trigonometric polynomials) has become a popular and efficient deterministic method for solving the Boltzmann equation, manifested by its high accuracy and possibility of being accelerated by the fast Fourier transform. This paper aims to review the Fourier-Galerkin spectral method for the Boltzmann equation, stability and convergence of the method, fast algorithms, and generalizations to various Boltzmann-type collisional kinetic equations.

MR(2010)主题分类: 

()
[1] Alexandre R, Desvillettes L, Villani C, and Wennberg B. Entropy dissipation and long-range interactions[J]. Arch. Rational Mech. Anal., 2000, 152:327-355.
[2] Bird G. Molecular Gas Dynamics and the Direct Simulation of Gas Flows[M]. Clarendon Press, Oxford, 1994.
[3] Birdsall C and Langdon A. Plasma Physics via Computer Simulation[M]. CRC Press, 2018.
[4] Bobylev A. The Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules. Doklady Akad. Nauk SSSR, 1975, 225:497-516.
[5] Bobylev A and Rjasanow S. Fast deterministic method of solving the Boltzmann equation for hard spheres[J]. Eur. J. Mech. B Fluids, 1999, 18:869-887.
[6] Cai Z, Fan Y, and Ying L. An entropic Fourier method for the Boltzmann equation[J]. SIAM J. Sci. Comput., 2018, 40:A2858-A2882.
[7] Cercignani C. Rarefied Gas Dynamics:From Basic Concepts to Actual Calculations[M]. Cambridge University Press, Cambridge, 2000.
[8] Cercignani C, Illner R, and Pulvirenti M. The Mathematical Theory of Dilute Gases[M]. SpringerVerlag, 1994.
[9] Dimarco G, Loubere R, Narski J, and Rey T. An efficient numerical method for solving the Boltzmann equation in multidimensions[J]. J. Comput. Phys., 2018, 353:46-81.
[10] Dimarco G and Pareschi L. Numerical methods for kinetic equations[J]. Acta Numer., 2014, 23:369-520.
[11] Einkemmer L, Hu J, and Ying L. An efficient dynamical low-rank algorithm for the BoltzmannBGK equation close to the compressible viscous flow regime[J]. SIAM J. Sci. Comput., 2021, 43:B1057-B1080.
[12] Filbet F. On deterministic approximation of the Boltzmann equation in a bounded domain[J]. Multiscale Model. Simul., 2012, 10:792-817.
[13] Filbet F, Hu J, and Jin S. A numerical scheme for the quantum Boltzmann equation with stiff collision terms[J]. ESAIM:Math. Model. Numer. Anal.(M2AN), 2012, 46:443-463.
[14] Filbet F and Mouhot C. Analysis of spectral methods for the homogeneous Boltzmann equation[J]. Trans. Amer. Math. Soc., 2011, 363:1947-1980.
[15] Filbet F, Mouhot C, and Pareschi L. Solving the Boltzmann equation in NlogN[J]. SIAM J. Sci. Comput., 2006, 28:1029-1053.
[16] Filbet F, Pareschi L, and Rey T. On steady-state preserving spectral methods for homogeneous Boltzmann equations[J]. C. R. Math., 2015, 353:309-314.
[17] Filbet F and Russo G. High order numerical methods for the space non-homogeneous Boltzmann equation[J]. J. Comput. Phys., 186:457-480, 2003.
[18] Gamba I and Haack J. A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit[J]. J. Comput. Phys., 2014, 270:40-57.
[19] Gamba I, Haack J, Hauck C, and Hu J. A fast spectral method for the Boltzmann collision operator with general collision kernels[J]. SIAM J. Sci. Comput., 2017, 39:B658-B674.
[20] Gamba I and Rjasanow S. Galerkin-Petrov approach for the Boltzmann equation[J]. J. Comput. Phys., 2018, 366:341-365.
[21] Gamba I and Tharkabhushanam S. Spectral-Lagrangian methods for collisional models of nonequilibrium statistical states[J]. J. Comput. Phys., 2009, 228:2012-2036.
[22] Hesthaven J, Gottlieb S, and Gottlieb D. Spectral Methods for Time-Dependent Problems. Cambridge Monographs on Applied and Computational Mathematics[M]. Cambridge University Press, 2007.
[23] Hu J, Huang X, Shen J, and Yang H. A fast Petrov-Galerkin spectral method for the multidimensional Boltzmann equation using mapped Chebyshev functions[J]. SIAM J. Sci. Comput., 2022,44:A1497-A1524.
[24] Hu J, Jin S, and Li Q. Asymptotic-preserving schemes for multiscale hyperbolic and kinetic equations. In R. Abgrall and C.-W. Shu, editors, Handbook of Numerical Methods for Hyperbolic Problems:Applied and Modern Issues, chapter 5, pages 103-129. North-Holland, 2017.
[25] Hu J and Ma Z. A fast spectral method for the inelastic Boltzmann collision operator and application to heated granular gases[J]. J. Comput. Phys., 2019, 385:119-134.
[26] Hu J and Qi K. A fast Fourier spectral method for the homogeneous Boltzmann equation with non-cutoff collision kernels[J]. J. Comput. Phys., 2020, 423:109806.
[27] Hu J, Qi K, and Yang T. A new stability and convergence proof of the Fourier-Galerkin spectral method for the spatially homogeneous Boltzmann equation[J]. SIAM J. Numer. Anal., 2021, 59:613-633.
[28] Hu J and Wang Y. An adaptive dynamical low rank method for the nonlinear Boltzmann equation[J]. J. Sci. Comput., to appear.
[29] Hu J and Ying L. A fast spectral algorithm for the quantum Boltzmann collision operator[J]. Commun. Math. Sci., 2012, 10:989-999.
[30] Hu Z and Cai Z. Burnett spectral method for high-speed rarefied gas flows[J]. SIAM J. Sci. Comput., 2020, 42:B1193-B1226.
[31] Ibragimov I and Rjasanow S. Numerical solution of the Boltzmann equation on the uniform grid[J]. Computing, 2002, 69:163-186.
[32] Jaiswal S, Alexeenko A, and Hu J. A discontinuous Galerkin fast spectral method for the full Boltzmann equation with general collision kernels[J]. J. Comput. Phys., 2019, 378:178-208.
[33] Jaiswal S, Alexeenko A, and Hu J. A discontinuous Galerkin fast spectral method for the multispecies Boltzmann equation[J]. Comput. Methods Appl. Mech. Engrg., 2019, 352:56-84.
[34] Jaiswal S, Pikus A, Strongrich A, Sebastiao I, Hu J, and Alexeenko A. Quantification of thermallydriven flows in microsystems using Boltzmann equation in deterministic and stochastic contexts[J]. Phys. Fluids (special issue on Direct Simulation Monte Carlo-The Legacy of Graeme A. Bird), 2019, 31:082002.
[35] Jin S. Asymptotic-preserving schemes for multiscale physical problems[J]. Acta Numer., 2022, 415-489.
[36] Jüngel A. Transport Equations for Semiconductors, volume 773 of Lecture Notes in Physics[M]. Springer, Berlin, 2009.
[37] Kitzler G and Schöberl J. A polynomial spectral method for the spatially homogeneous Boltzmann equation[J]. SIAM J. Sci. Comput., 2019, 41:B27-B49.
[38] Krook M and Wu T T. Exact solutions of the Boltzmann equation[J]. Phys. Fluids, 1977, 20:1589-1595.
[39] Lebedev V and Laikov D. A quadrature formula for the sphere of the 131st algebraic order of accuracy[J]. Doklady Math., 1999, 59:477-481.
[40] LeVeque R. Numerical Methods for Conservation Laws. Birkhäuser Verlag, Basel, second edition, 1992.
[41] Lu J and Mendl C. Numerical scheme for a spatially inhomogeneous matrix-valued quantum Boltzmann equation[J]. J. Comput. Phys., 2015, 291:303-316.
[42] Mouhot C and Pareschi L. Fast algorithms for computing the Boltzmann collision operator[J]. Math. Comp., 2006, 75:1833-1852.
[43] Mouhot C and Villani C. Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[J]. Arch. Rational Mech. Anal., 2004, 173:169-212.
[44] Naldi G, Pareschi L, and Toscani G, editors. Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences[M]. Birkhäuser Basel, 2010.
[45] Pareschi L and Perthame B. A Fourier spectral method for homogeneous Boltzmann equations[J]. Transport Theory Statist. Phys., 1996, 25:369-382.
[46] Pareschi L and Russo G. Numerical solution of the Boltzmann equation I:spectrally accurate approximation of the collision operator[J]. SIAM J. Numer. Anal., 2000, 37:1217-1245.
[47] Pareschi L and Russo G. On the stability of spectral methods for the homogeneous Boltzmann equation[J]. Transport Theory Statist. Phys., 2000, 29:431-447.
[48] Pareschi L, Toscani G, and Villani C. Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit[J]. Numer. Math., 2003, 93:527-548.
[49] Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[M]. In Advanced numerical approximation of nonlinear hyperbolic equations, Springer, 1998, 325-432.
[50] Uehling E and Uhlenbeck G. Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I[J]. Phys. Rev., 1933, 43:552-561.
[51] Villani C. A review of mathematical topics in collisional kinetic theory. In S. Friedlander and D. Serre, editors, Handbook of Mathematical Fluid Mechanics, North-Holland, 2002, I:71-305.
[52] Villani C. Mathematics of granular materials[J]. J. Stat. Phys., 2006, 124:781-822.
[53] Womersley R. Efficient spherical designs with good geometric properties[M]. In Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan, Springer, 2018, 1243-1285.
[54] Wu L, White C, Scanlon T, Reese J, and Zhang Y. Deterministic numerical solutions of the Boltzmann equation using the fast spectral method[J]. J. Comput. Phys., 2013, 250:27-52.
[1] 包学忠, 胡琳, 产蔼宁. 线性随机变时滞微分方程指数Euler方法的收敛性和稳定性[J]. 计算数学, 2022, 44(3): 339-353.
[2] 贾旻茜, 张宇欣, 游雄. Hamilton系统的对称辛广义加性Runge-Kutta方法[J]. 计算数学, 2022, 44(3): 379-395.
[3] 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33.
[4] 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505.
[5] 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321.
[6] 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226.
[7] 尚在久, 宋丽娜. 关于辛算法稳定性的若干注记[J]. 计算数学, 2020, 42(4): 405-418.
[8] 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309.
[9] 胡冬冬, 曹学年, 蒋慧灵. 带非线性源项的双侧空间分数阶扩散方程的隐式中点方法[J]. 计算数学, 2019, 41(3): 295-307.
[10] 盛秀兰, 赵润苗, 吴宏伟. 二维线性双曲型方程Neumann边值问题的紧交替方向隐格式[J]. 计算数学, 2019, 41(3): 266-294.
[11] 杨晋平, 李志强, 闫玉斌. 求解Riesz空间分数阶扩散方程的一种新的数值方法[J]. 计算数学, 2019, 41(2): 170-190.
[12] 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90.
[13] 丛玉豪, 胡洋, 王艳沛. 含分布时滞的时滞微分系统多步龙格-库塔方法的时滞相关稳定性[J]. 计算数学, 2019, 41(1): 104-112.
[14] 张根根, 唐蕾, 肖爱国. 求解刚性Volterra延迟积分微分方程的隐显单支方法的稳定性与误差分析[J]. 计算数学, 2018, 40(1): 33-48.
[15] 陈丰, 吴峻峰. 分布式通信响应优化问题及其内点法求解[J]. 计算数学, 2017, 39(4): 378-392.
阅读次数
全文


摘要