陈勋1,2, 蒋艳群1,2, 陈琦2, 张旭1, 胡迎港1
陈勋, 蒋艳群, 陈琦, 张旭, 胡迎港. 粘性Burgers方程的高阶精度半隐式WCNS方法[J]. 数值计算与计算机应用, 2022, 43(1): 76-87.
Chen Xun, Jiang Yanqun, Chen Qi, Zhang Xu, Hu Yinggang. HIGH-ORDER SEMI-IMPLICIT WCNS METHOD FOR BURGERS' EQUATION[J]. Journal on Numerica Methods and Computer Applications, 2022, 43(1): 76-87.
Chen Xun1,2, Jiang Yanqun1,2, Chen Qi2, Zhang Xu1, Hu Yinggang1
MR(2010)主题分类:
分享此文:
[1] Deng X G, Zhang H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165:22-44. [2] Deng X G. New high-order hybrid cell-edge and cell-node weighted compact nonlinear schemes[C]. 20th AIAA Computational Fluid Dynamics Conference. 2011:3857. [3] Deng X G, Jiang Y, Mao M L, Liu H Y, Li S, Tu G H. A family of hybrid cell-edge and cell-node dissipative compact schemes satisfying geometric conservation law[J]. Computers & Fluids, 2015, 116:29-45. [4] Zhang S H, Jiang S, Shu C W. Development of nonlinear weighted compact schemes with increasingly higher order accuracy[J]. Journal of Computational Physics, 2008, 227(15):7294-7321. [5] Nonomura T, Fujii K. Robust explicit formulation of weighted compact nonlinear scheme[J]. Computers & Fluids, 2013, 85:8-18. [6] Yan Z G, Liu H Y, Ma Y K, Mao M L, Deng X G. Further improvement of weighted compact nonlinear scheme using compact nonlinear interpolation[J]. Computers & Fluids, 2017, 156:135-145. [7] Tian Z Z, Wang G X, Zhang F, Zhang H B. A third-order compact nonlinear scheme for compressible flow simulations[J]. International Journal for Numerical Methods in Fluids, 2020, 92:1352-1367. [8] Jiang Y Q, Chen X, Zhang X, Xiong T, Zhou S G. High order semi-implicit weighted compact nonlinear scheme for the all-Mach isentropic Euler system[J]. Advances in Aerodynamics, 2020, 2:27. [9] Cole J D. On a quasi-linear parabolic equation occurring in aerodynamics[J]. Quarterly of Applied Mathematics, 1951, 9(3):225-236. [10] Hopf E. The partial differential equation ut + uux=μxx[J]. Communications on Pure & Applied Mathematics, 1950, 3:201-230. [11] 蒋桂凤. Burgers方程及广义Burgers方程的精确解[J]. 大学数学, 2019, (4):100-103. [12] 杨宇博, 马和平. 广义空间分数阶Burgers方程的Legendre Galerkin-Chebyshev配置方法逼近[J]. 数值计算与计算机应用, 2017, 38(3):236-244. [13] 李伟. Burgers方程的精确解[J]. 渤海大学学报(自然科学版), 2013, 34(1):26-28. [14] öziş T, Aksan E N, özdeş A. A finite element approach for solution of Burgers' equation[J]. Applied Mathematics & Computation, 2003, 139(2):417-428. [15] Aksan E N. Quadratic B-spline finite element method for numerical solution of the Burgers' equation[J]. Applied Mathematics & Computation Elsevier, 2006. [16] Bülent S, Da D. Quartic B-spline collocation method to the numerical solutions of the Burgers' equation[J]. Chaos Solitons & Fractals, 2007, 32(3):1125-1137. [17] Khater A H, Temsah R S, Hassan M M. A Chebyshev spectral collocation method for solving Burgers'-type equations[J]. Journal of Computational and Applied Mathematics, 2008, 222(2):333-350. [18] Liao W. An implicit fourth-order compact finite difference scheme for one-dimensional Burgers' equation[J]. Applied Mathematics & Computation, 2008, 206(2):755-764. [19] Korkmaz A, Dag I. Polynomial based differential quadrature method for numerical solution of nonlinear Burgers' equation[J]. Journal of the Franklin Institute, 2011, 348(10):2863-2875. [20] Tabatabaei A H A E, Shakour E, Dehghan M. Some implicit methods for the numerical solution of Burgers' equation[J]. Applied Mathematics and Computation, 2007, 191(2):560-570. [21] Rahman K, Helil N, Yimin R. Some new semi-implicit finite difference schemes for numerical solution of Burgers equation[C]. International Conference on Computer Application & System Modeling. IEEE, 2010. [22] Mittal R C, Rohila R. Traveling and Shock Wave Simulations in A Viscous Burgers' Equation with Periodic Boundary Conditions[J]. International Journal of Applied and Computational Mathematics, 2018. [23] Jiang G S, Shu C-W, Efficient implementation of weighted ENO schemes[J], Journal of Computational Physics, 1996, 126(1):202-228. [24] Ascher U M, Ruuth S J, Spiteri R J. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations[J]. Applied Numerical Mathematics, 1997, 25(2-3):151-167. [25] Higueras I. Characterizing strong stability preserving additive Runge-Kutta methods[J]. Journal of scientific Computing[J]. 2009, 39(1):115-128. [26] Saad Y, Schultz M H. GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3):856-869. |
[1] | 张旭, 蒋艳群, 陈勋, 胡迎港. 粘性Burgers方程的高阶隐式WCNS格式[J]. 数值计算与计算机应用, 2022, 43(2): 188-201. |
[2] | 杨宇博, 马和平. 广义空间分数阶Burgers方程的Legendre Galerkin-Chebyshev配置方法逼近[J]. 数值计算与计算机应用, 2017, 38(3): 236-244. |
[3] | 闵涛, 任菊成, 耿蓓. Chebyshev谱-Euler混合方法求解一类非线性Burgers方程[J]. 数值计算与计算机应用, 2013, 34(2): 81-88. |
[4] | 陈继宇, 张涛锋, 孙建安, 石玉仁, 马明义. 用余弦微分求积法数值求解KdV-Burgers方程[J]. 数值计算与计算机应用, 2011, 32(2): 125-134. |
[5] | 封建湖,蔡力,谢文贤,王振海,佘红伟. 双曲守恒律标量方程的高分辨率激波追踪方法[J]. 数值计算与计算机应用, 2005, 26(2): 153-160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||