• 论文 • 上一篇
黄荣锋1,2, 赵永华1, 于天禹1,2, 刘世芳1,2
黄荣锋, 赵永华, 于天禹, 刘世芳. 基于GPU架构的两层并行块Jacobi SVD算法[J]. 数值计算与计算机应用, 2022, 43(4): 380-399.
Huang Rongfeng, Zhao Yonghua, Yu Tianyu, Liu Shifang. A PARALLEL TWO-TIER BLOCKED JACOBI SVD ALGORITHM ON GPU[J]. Journal on Numerica Methods and Computer Applications, 2022, 43(4): 380-399.
Huang Rongfeng1,2, Zhao Yonghua1, Yu Tianyu1,2, Liu Shifang1,2
MR(2010)主题分类:
分享此文:
[1] Ranade A, Mahabalarao S S, Kale S. A variation on SVD based image compression[J]. Image & Vision Computing, 2007, 25(6):771-777. [2] Singh N, Joshi S, Birla S, et al. Suitability of singular value decomposition for image watermarking[C]//the 6th International Conference on Signal Processing and Integrated Networks (SPIN). Piscataway, NJ:IEEE, 2019:983-986. [3] Azadeh M, Ahmad M A. SSVD:Structural SVD-based image quality assessment[J]. Signal Processing:Image Communication, 2019, 5(75):54-63. [4] Zhao L N, Hu W B, Cui L H. Face recognition feature comparison based SVD and FFT[J]. Journal of Signal and Information Processing, 2012, 3(2):259-262. [5] Wang H H, Wang X, Cheng Y, et al. Research on noise reduction method of RDTS using D-SVD[J]. Optical Fiber Technology, 2019, 5(48):151-158. [6] Golub G H, Kahan W. Calculating the singular values and pseudo-inverse of a matrix[J]. Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, 1965, 2(2):205-224. [7] Gu M, Eisenstat S C. A divide-and-conquer algorithm for the bidiagonal SVD[J]. SIAM Journal on Matrix Analysis and Applications, 1995, 16(1):79-92. [8] Li S, Gu M, CHENG L, et al. An accelerated divide-and-conquer algorithm for the bidiagonal SVD problem[J]. SIAM Journal on Matrix Analysis and Applications, 2014, 35(3):1038-1057. [9] Kogbetliantz E G. Solution of linear equations by diagonalization of coefficients matrix[J]. Quarterly of Applied Mathematics, 1955, 13(2):123-132. [10] Hestenes M R. Inversion of matrices by biorthogonalization and related results[J]. Journal of the Society for Industrial and Applied Mathematics, 1958, 6(1):51-90. [11] Bischof C H. Computing the singular value decomposition on a distributed system of vector processors[J].Parallel Computing, 1989, 11(2):171-186. [12] Arbenz P, Slapnicar I. An analysis of parallel implementations of the block -Jacobi algorithm for computing the SVD. In:Proc. 3rd Int. Conf. Industrial and Applied Mathematics (ICIAM 95), (Goetz Alefeld, Oskar Mahrenholtz, and Reinhard Mennicken, eds.), Hamburg, July 1995. Zeitschrift fur Angewandte Mathematik und Mechanik (Special issue). Berlin:Akademie Verlag, vol. I,pp. 343-344(1996). [13] Hari V. Accelerating the SVD block-Jacobi method[J]. Computing, 2005, 75(1):27-53. [14] Drmac Z, Veselic K. New fast and accurate Jacobi SVD algorithm.I[J]. SIAM Journal on Matrix Analysis and Applications, 2008, 29(4):1322-1342. [15] Drmac Z, Veselic K. New fast and accurate Jacobi SVD algorithm.II[J]. SIAM Journal on Matrix Analysis and Applications, 2008, 29(4):1343-1362. [16] Li H, Kluger Y,Tygert M. Randomized algorithms for distributed computation of principal component analysis and singular value decomposition[J]. Advances in Computational Mathematics, 2018, 44(5):1651-1672. [17] Andrei T, Pantelimon G. A fast singular value decomposition algorithm of general k-tridiagonal matrices[J]. Journal of Computational Science, 2019, 31(2):1-5. [18] Tugay R, Oguducu S G. Ranky. An approach to solve distributed svd on large sparse matrices[C]//2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE), Kuala Lumpur:IEEE, 2018:1-6. [19] Lahabar S, Narayanan P J. Singular value decomposition on GPU using CUDA[C]//2009 IEEE International Symposium on Parallel & Distributed Processing, Piscataway, NJ:IEEE, 2009:1-10. [20] http://icl.utk.edu/magma/ [21] Novakovic V. A hierarchically blocked Jacobi SVD algorithm for single and multiple graphics processing units[J]. SIAM Journal on Scientific Computing, 2015, 37(1):1-30. [22] https://docs.nvidia.com/CUDA/cusolver/index.html [23] Drmac Z. Implementation of Jacobi rotations for accurate singular value computation in floating point arithmetic[J]. SIAM Journal on Scientific Computing, 1997, 18(4):1200-1222. [24] Brent R P, Luk F T. The solution of singular-value and symmetric eigenvalue problems on multiprocessor arrays[J]. SIAM Journal on Scientific and Statistical Computing, 1985, 6(1):69-84. [25] Eberlein P J. On one-sided Jacobi methods for parallel computation[J]. SIAM Journal on Algebraic Discrete Methods, 1987, 8(4):790-796. [26] Luk F T, Park H. On parallel Jacobi orderings[J]. SIAM Journal on Scientific and Statistical Computing, 1989, 10(1):18-26. [27] Luk F T, Park H. A proof of convergence for two parallel Jacobi SVD algorithms[J]. IEEE Transactions on Computers, 1989, 38(6):806-811. [28] https://developer.nvidia.com/cublas [29] Rivera C, Chen J R, Xiong N, et al. TSM2X:High-performance tall-and-skinny matrix-matrix multiplication on GPU s[J]. Journal of Parallel and Distributed Computing, 2021, 151(5):70-85. |
[1] | 谭光明. 高性能计算中的性能工程问题[J]. 数值计算与计算机应用, 2022, 43(4): 343-362. |
[2] | 兰林, 朱春钢. 基于Newton迭代法的最小二乘渐进迭代逼近[J]. 数值计算与计算机应用, 2022, 43(1): 88-111. |
[3] | 刘伟峰. 高可扩展、高性能和高实用的稀疏矩阵计算研究进展与挑战[J]. 数值计算与计算机应用, 2020, 41(4): 259-281. |
[4] | 于天禹, 赵永华, 赵莲. 基于神威太湖之光架构的LOBPCG并行算法研究[J]. 数值计算与计算机应用, 2019, 40(4): 291-309. |
[5] | 徐小文. 并行代数多重网格算法:大规模计算应用现状与挑战[J]. 数值计算与计算机应用, 2019, 40(4): 243-260. |
[6] | 谢力, 王武, 冯仰德. 基于多层半可分结构矩阵的快速算法与并行实现[J]. 数值计算与计算机应用, 2017, 38(1): 37-48. |
[7] | 李政, 冯春生, 张晨松. 一种针对GPU上的油藏数值模拟的高效SpMV[J]. 数值计算与计算机应用, 2016, 37(4): 315-324. |
[8] | 郑汉垣, 宋安平, 张武. 基于MIC的GaBP并行算法[J]. 数值计算与计算机应用, 2015, 36(1): 31-41. |
[9] | 胡伟. 常微分方程初值问题的完全三阶并行块算法及实验阶研究[J]. 数值计算与计算机应用, 2014, 35(3): 163-170. |
[10] | 刘新, 张慧娟, 孙彬彬, 王艳超. 基于角点检测和奇异值分解的多重数字水印算法[J]. 数值计算与计算机应用, 2013, 34(4): 279-285. |
[11] | 王玉柱, 姜金荣, 蔡长青, 迟学斌, 岳天祥. 三维变分资料同化系统并行算法设计与实现[J]. 数值计算与计算机应用, 2013, 34(3): 231-240. |
[12] | 吴洋, 赵永华, 纪国良. 一类大规模稀疏矩阵特征问题求解的并行算法[J]. 数值计算与计算机应用, 2013, 34(2): 136-146. |
[13] | 乔海军, 李会元. 二维各向同性湍流直接数值模拟的六边形谱方法及其GPU实现和优化[J]. 数值计算与计算机应用, 2013, 34(2): 147-160. |
[14] | 张学波, 李晓梅. 快速求解一类Toeplitz循环三对角线性方程组的分布式并行算法[J]. 数值计算与计算机应用, 2009, 30(3): 161-169. |
[15] | 姚国柱, 廖安平, 段雪峰. 矩阵方程$AXB=C$的最小二乘Hamilton解[J]. 数值计算与计算机应用, 2009, 30(1): 48-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||