• 论文 • 上一篇    

CGCS2000高斯坐标范围精确及快速求解算法研究

刘斌   

  1. 西南计算机有限责任公司, 重庆 400060
  • 收稿日期:2021-06-12 发布日期:2023-03-16

刘斌. CGCS2000高斯坐标范围精确及快速求解算法研究[J]. 数值计算与计算机应用, 2023, 44(1): 37-52.

Liu Bin. CGCS2000 RESEARCH ON THE ACCURATE AND FAST ALGORITHM FOR THE RANGE OF GAUSS ABSCISSA/ORDINATE[J]. Journal on Numerica Methods and Computer Applications, 2023, 44(1): 37-52.

CGCS2000 RESEARCH ON THE ACCURATE AND FAST ALGORITHM FOR THE RANGE OF GAUSS ABSCISSA/ORDINATE

Liu Bin   

  1. Southwest Computer Co., LTD, Chongqing 400060, China
  • Received:2021-06-12 Published:2023-03-16
高斯坐标因其直观、计算简单等特点广泛应用于我军作战指挥信息系统中,人工经常录入数值超界的无效坐标,轻则降低系统作战效率,重则导致系统出现射击诸元解算错误等严重问题.高斯投影公式表明横、纵坐标分量存在强关联,两坐标分量相互约束且映射关系复杂,考虑到系统中存在手持终端等大量低性能硬件环境,需对CSCS2000坐标系下的高斯坐标范围精确及快速求解算法进行研究.通过对高斯投影原理的分析,在已知高斯纵坐标情况下,可采用逐步逼近迭代算法来实现高斯横坐标取值范围的精确计算,也可采用最小二乘法实现快速计算;在已知高斯横坐标情况下,可采用折半查找算法实现高斯纵坐标取值范围的精确计算,也可采用最小二乘法与折半查找算法组合实现快速计算.通过对大量计算结果的数据对比与分析,计算精度和速度均满足要求,开发了相关工具软件,适合工程化实施和应用.
Gauss coordinates are widely used in our army's battle command information system because of their intuitive and simple calculation. Manual inputs of invalid coordinates whose values exceed the boundary will often reduce the combat efficiency of the system, or lead to serious problems such as shooting parameters calculation errors in the system. The Gaussian projection formula shows that there is a strong correlation between the abscissa and ordinate components, the two coordinate components are constrained by each other and the mapping relationship is complex. Considering the existence of a large number of low-performance hardware environments such as handheld terminals in the system, it is necessary to study the accurate and fast solution algorithm of the Gaussian coordinate range in the CGCS2000. Through the analysis of Gaussian projection principle, when the Gaussian ordinate is known, the step-by-step approach iterative algorithm can be used to realize the accurate calculation of the value range of Gaussian abscissa, or the least square method can be used to realize the fast calculation; When the Gaussian abscissa is known, the half search algorithm can be used to accurately calculate the value range of Gaussian ordinate, or the combination of least square method and half search algorithm can be used to realize fast calculation. Through the data comparison and analysis of a large number of calculation results, the calculation accuracy and speed meet the requirements,and relevant tool software is developed,which is suitable for engineering implementation and application.

MR(2010)主题分类: 

()
[1] 陈健, 晁定波. 椭球大地测量学[M]. 测绘出版社, 1989, 156.
[2] 程鹏飞等. 2000国家大地坐标系实用宝典[M]. 测绘出版社, 2008:3-4.
[3] 中国人民解放军总装备部. GJB6304-20082000中国大地测量系统[S]. 2008:7-17.
[4] 李庆杨, 王能超, 易大义. 数值分析[M]. 清华大学出版社, 2008, 13.
[1] 金鑫, 汪韬. 两阶段Arrhenius方程参数优化算法[J]. 数值计算与计算机应用, 2022, 43(3): 329-342.
[2] 袁占斌, 聂玉峰, 欧阳洁. 基于泰勒基函数的移动最小二乘法及误差分析[J]. 数值计算与计算机应用, 2012, (1): 25-31.
阅读次数
全文


摘要