• 论文 • 上一篇
郑淑雯, 高振, 袁春鑫
郑淑雯, 高振, 袁春鑫. 基于长短期记忆神经网络的非侵入式约化基方法在非线性波问题中的应用[J]. 数值计算与计算机应用, 2022, 43(4): 400-414.
Zheng Shuwen, Gao Zhen, Yuan Chunxin. LSTM NETWORK BASED NON-INTRUSIVE REDUCED BASIS METHOD FOR NONLINEAR WAVE EQUATIONS[J]. Journal on Numerica Methods and Computer Applications, 2022, 43(4): 400-414.
Zheng Shuwen, Gao Zhen, Yuan Chunxin
MR(2010)主题分类:
分享此文:
[1] Camassa R, Holm D. An integrable shallow wave equation with peaked solitons[J]. Phys. Rev. Lett., 1993, 71:1661-1664. [2] Higham D J. An algorithmic introduction to numerical simulation of stochastic differential equations[J]. SIAM Rev., 2001, 43(3):525-546. [3] Umeda T, Omura Y, Matsumoto H, Usui H. Formation of electrostatic solitary waves in space plasmas:Particle simulations with open boundary conditions[J]. J. Geophys. Res-Space Phys., 2002, 107(A12):1449, DOI:10.1029/2001JA000286. [4] Seibold B, Flynn M R, Kasimov A R, Rosales R R. Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models[J]. Netw. Heterog. Media, 2013, 8(3):745- 772. [5] Lax P D. Integrals of nonlinear equations of evolution and solitary waves[J]. Comm. Pure Appl. Math., 1968, 21:467-490. [6] Knobel R. An introduction to the mathematical theory of waves[M]. Yale University press, Providence, R.I., 2000. [7] Logan J D. An introduction to nonlinear partial differential Equations[M]. John Wiley & Sons, Inc., Hoboken, New Jersey, 2008. [8] Xiao D, Fang F, Heaney C E, Navon I M, Pain C C. A domain decomposition method for the non-intrusive reduced order modelling of fluid flow[J]. Comput. Meth. Appl. Mech. Eng., 2019, 354:307-330. [9] Haasdonk B, Ohlberger M. Reduced basis method for finite volume approximations of parametrized linear evolution equations[J]. ESAIM-Math. Model. Numer. Anal.-Model., 2008, 42(2):277-302. [10] Lieu T, Farhat C, Lesoinne A. Reduced-order fluid/structure modeling of a complete aircraft configuration[J]. Comput. Meth. Appl. Mech. Eng., 2006, 195(41-43):5730-5742. [11] Amsallem D, Zahr M J, Farhat C. Nonlinear model order reduction based on local reduced-order bases[J]. Int. J. Numer. Methods Eng., 2012, 92(10):891-916. [12] Proctor J L, Brunton S L, Kutz J N. Dynamic Mode Decomposition with Control[J]. SIAM J. Appl. Dyn. Syst., 2016, 15(1):142-161. [13] Afkham B M, Hesthaven J S. Structure preserving model reduction of parametric hamiltonian systems[J]. SIAM J. Sci. Comput.,2017, 39(6):A2616-A2644. [14] Xiao D, Fang F, Pain C C, Navon I M. A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications[J]. Comput. Meth. Appl. Mech. Eng., 2017, 317:868-889. [15] Hesthaven J S, Ubbiali S. Non-intrusive reduced order modeling of nonlinear problems using neural networks[J]. J. Comput. Phys., 2018, 363:55-78. [16] Liang Y C, Lee H P, Lim S P, Lin W Z, Lee K H, Wu C G. Proper orthogonal decomposition and its applications, part I:theory[J]. J. Sound Vibr., 2002, 252(3):527-544. [17] Buffa A, Maday Y, Patera A T, Prud'homme C, Turinici G. A priori convergence of the greedy algorithm for the parametrized reduced basis method[J]. ESAIM-Math. Model. Numer. Anal.- Model.,2012, 46(3):595-603. [18] Gao Z, Liu Q, Hesthaven J S, Wang B S, Don W S, Wen X. Non-intrusive reduced order modeling of convection dominated flows using artificial neural networks with application to Rayleigh-Taylor instability[J]. Commun. Comput. Phys., 2021, 30(1), 97-123. [19] Zhao Z, Chen W H, Wu X M, Chen P C Y, Liu J M. LSTM network:a deep learning approach for short-term traffic forecast[J]. IET Intell. Transp. Syst., 2017, 11(2):68-75. [20] Lingras P, Sharma S, Zhong M. Prediction of recreational travel using genetically designed regression and time-delay neural network models[J]. Transp. Res. Record, 2002, 1805:16-24. [21] Schmidt E. Zur theorie der linearen und nichtlinearen integralgleichungen. i. teil:Entwicklung willkrlicher funktionen nach systemen vorgeschriebener[J]. Math. Ann., 1907, 63:433-476. [22] Rudy S H, Brunton S L, Proctor J L, Kutz J N. Data-driven discovery of partial differential equations[J]. Sci. Adv., 2017, 3(4):e1602614, DOI:10.1126/sciadv.1602614. [23] Raissi, M. Deep hidden physics models:deep learning of nonlinear partial differential equations[J]. J. Mach. Learn. Res., 2018, 19:25, 1-24. [24] Driscoll T A, Hale N, Trefethen L N. Chebfun guide[M]. Pafnuty Publications, Oxford, 2014. [25] Corral R, Jimenez J. Fourier/Chebyshev methods for the incompressible Navier-Stokes equations in infinite domains[J]. J. Comput. Phys., 1995, 121(2):261-270. [26] Kutz J Nathan, Brunton Steven L, Brunton B W, Proctor Joshua L. Dynamic mode decomposition:data-driven modeling of complex systems[M]. Society for Industrial & Applied Mathematics, New York, United States, 2016. [27] Taira K, Colonius T. The immersed boundary method:a projection approach[J]. J. Comput. Phys., 2007, 225(2):2118-2137. [28] Yu D, Fu L, Yang H W. A new dynamic model of ocean internal solitary waves and the properties of its solutions[J]. Commun. Nonlinear Sci. Numer. Simul., 2021, 95:105622, DOI:10.1016/j.cnsns.2020.105622. [29] Marshall J, Adcroft A, Hill C, Perelman L, Heisey C, A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers[J]. J. Geophys. Res.-Oceans, 1997, 102:5753-5766. [30] Yuan C, Grimshaw R, Johnson E, Chen X E. The propagation of internal solitary waves over variable topography in a horizontally two-dimensional framework[J]. J. Phys. Oceanogr., 2018, 48(2):283-300. [31] Zeng Z, Chen X E, Yuan C X, Tang S Q, Chi L Q. A numerical study of generation and propagation of type-a and type-b internal solitary waves in the northern South China Sea[J]. Acta Oceanol. Sin., 2019, 38(11):20-30. [32] Gers F A, Schmidhuber J, Cummins F. Learning to Forget:Continual Prediction with LSTM[J]. Neural Computation, 2000, 12:2451-2471. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||