• 论文 • 上一篇
刘新亮1, 张镭1, 朱圣鑫2,3
刘新亮, 张镭, 朱圣鑫. 一类基于带约束能量最小基函数的数值均匀化方法的二维数值实现[J]. 数值计算与计算机应用, 2022, 43(4): 363-379.
Liu Xinliang, Zhang Lei, Zhu Shengxin. NUMERICAL IMPLEMENTATION OF A CLASS OF NUMERICAL HOMOGENIZATION METHODS WITH BASES FROM CONSTRAINED ENERGY MINIMIZATION[J]. Journal on Numerica Methods and Computer Applications, 2022, 43(4): 363-379.
Liu Xinliang1, Zhang Lei1, Zhu Shengxin2,3
MR(2010)主题分类:
分享此文:
[[1] Owhadi H, Zhang L, Berlyand L. Polyharmonic homogenization, rough polyharmonic splines and sparse super-locatization[J]. ESIAM, 2014, 48(2):517-552. [2] Liu X, Zhang L, S. Z. Generalized Polyharmonic Splines for Multiscale PDEs with Rough Coefficients[J]. Preprint, 2021. [3] Målqvist A, Peterseim D. Localization of elliptic multiscale problems[J]. Math. Comp., 2014, 83(290):2583-2603. [4] Chung E T, Efendiev Y, Leung W T. Constraint energy minimizing generalized multiscale finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 339:298- 319. [5] Peterseim D. Eliminating the pollution effect in Helmholtz problems by local subscale correction.[J]. Math. Comp., 2017, 86:1005-1036. [6] Liu X, Chung E, Zhang L. Iterated numerical homogenization for multi-scale elliptic equations with monotone nonlinearity[J]. arXiv preprint arXiv:2101.00818, 2021. [7] Gräser C, Sander O. The dune-subgrid module and some applications[J]. Computing, 2009, 86(4):269. [8] Alnæs M, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes M E, Wells G N. The FEniCS project version 1.5[J]. Archive of Numerical Software, 2015, 3(100). [9] ZHANG L, ZHENG W, LU B, CUI T, LENG W, LIN D. The toolbox PHG and its applications[J]. SCIENTIA SINICA Informationis, 2016, 46(10):1442-1464. [10] Owhadi H. Bayesian Numerical Homogenization[J]. Multiscale Model. Simul., 2015, 13(3):812- 828. [11] Owhadi H, Zhang L. Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients[J]. accpted by Journal of Computational Physics, 2017. [12] Owhadi H. Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games[J]. SIAM Rev., 2017, 59(1):99-149. arXiv:1503.03467, 2015. [13] Braess D. Finite elements:Theory, fast solvers, and applications in solid mechanics[M]. Cambridge University Press, 2007. [14] Boyd S, Boyd S P, Vandenberghe L. Convex optimization[M]. Cambridge university press, 2004. [15] Li R, Chen Z, Wu W. Gneralized Difference Methods For Differential Equations[M]. Marcel Dekker, Inc, 2000. [16] Zhang Z, Zou Q. Some recent advances on vertex centered finite volume element methods for elliptic equations[J]. Science China Mathematics, 2013, 56:2507-2522. |
[1] | 张继伟. 非局部和反常扩散模型的数值方法[J]. 数值计算与计算机应用, 2021, 42(3): 183-214. |
[2] | 徐小文. 并行代数多重网格算法:大规模计算应用现状与挑战[J]. 数值计算与计算机应用, 2019, 40(4): 243-260. |
[3] | 刘辉, 崔涛, 冷伟. hp自适应有限元计算中一种新的自适应策略[J]. 数值计算与计算机应用, 2015, 36(2): 100-112. |
[4] | 赵景余, 张国凤, 常岩磊. 求解鞍点问题的一种新的结构算法[J]. 数值计算与计算机应用, 2009, 30(2): 138-142. |
[5] | 徐小文, 莫则尧, 刘旭. 基于局部松弛和粗化策略的代数多重网格方法[J]. 数值计算与计算机应用, 2009, 30(2): 81-91. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||