• 论文 • 上一篇
周佳敏1, 刘璐璐1, 余瀚2,3
周佳敏, 刘璐璐, 余瀚. 非线性消去算法在跨音速全速势方程计算中的应用[J]. 数值计算与计算机应用, 2022, 43(4): 425-446.
Zhou Jiamin, Liu Lulu, Yu Han. APPLICATION OF NONLINEAR ELIMINATION IN SOLVING THE TRANSONIC FULL POTENTIAL EQUATION[J]. Journal on Numerica Methods and Computer Applications, 2022, 43(4): 425-446.
Zhou Jiamin1, Liu Lulu1, Yu Han2,3
MR(2010)主题分类:
分享此文:
[1] Knoll D A, Keyes D E. Jacobian-free Newton-Krylov methods:A survey of approaches and applications[J]. Journal of Computational Physics, 2004, 193(2):357-397. [2] Cai X C, Gropp W D, Keyes D E, Melvin R G, Young D P. Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation[J]. SIAM Journal on Scientific Computing, 1996, 19(1):246-265. [3] Cai X C, Li X F. Inexact Newton methods with restricted additive Schwarz based nonlinear elimination for problems with high local nonlinearity[J]. SIAM Journal on Scientific Computing, 2013, 33(2):746-762. [4] Knoll D A, Rider W J. A multigrid preconditioned Newton-Krylov method[J]. SIAM Journal on Scientific Computing, 1999, 21(2) [5] 曾祥州. 微波热传导方程的Newton-Krylov-Schwarz算法研究[D]. PhD thesis, 湖南大学, 2018. [6] Cai X C, Keyes D E. Nonlinearly preconditioned inexact Newton algorithms[J]. SIAM Journal on Scientific Computing, 2002, 24(1):183-200. [7] Liu L, Keyes D E. Field-split preconditioned inexact Newton algorithms[J]. SIAM Journal on Scientific Computing, 2015, 37(3):1388-1409. [8] Hwang F N, Lin H L. Two-level nonlinear elimination based preconditioners for inexact Newton methods with application in shocked duct flow calculation[J]. Electronic Transactions on Numerical Analysis, 2010, 37:239-251. [9] Liu L, Keyes D E, Krause R. A note on adaptive nonlinear preconditioning techniques[J]. SIAM Journal on Scientific Computing, 2018, 40(2):A1171-A1186. [10] Yang H, Yang C, Sun S. Active-set reduced-space methods with nonlinear elimination for two-phase flow problems in porous media[J]. SIAM Journal on Scientific Computing, 2016, 38(4):B593-B618. [11] Yang H, Sun S, Yang C. Nonlinearly preconditioned semismooth Newton methods for variational inequality solution of two-phase flow in porous media[J]. Journal of Computational Physics, 2016, 332:1-20. [12] Lanzkron P J, Rose D J, Wilkes J T. An analysis of approximate nonlinear elimination[J]. SIAM Journal on Scientific Computing, 1996, 19(1):538-559. [13] Yang H, Hwang F N, Cai X C. Nonlinear preconditioning techniques for full-space LagrangeNewton solution of PDE-constrained optimization problems[J]. SIAM Journal on Scientific Computing, 2016, 38(5):A2756-A2778. [14] Luo L, Shiu W S, Chen R, Cai X C. A nonlinear elimination preconditioned inexact Newton method for blood flow problems in human artery with stenosis[J]. Journal of Computational Physics, 2019, 399:108926. [15] Young D P, Melvin R G, Bieterman M B, Johnson F T, Samant S S, Bussoletti J E. A locally refined rectangular grid finite element method:application to computational fluid dynamics and computational physics[J]. Journal of Computational Physics, 1991, 92(1):1-66. [16] Lyu F X, Xiao T H, Yu X Q. A fast and automatic full-potential finite volume solver on Cartesian grids for unconventional configurations[J].中国航空学报:英文版, 2017, 030(003):951-963. [17] 吕凡熹, 肖天航, 余雄庆.基于自适应直角网格的二维全速势方程有限体积解法[J].计算力学学报, 2016,3: 424-430. [18] Jameson A. Transonic potential flow calculations using conservation form[C]. In Proc. 2nd AIAA Computational Fluid Dynamics Conference, pages 148-155, 1975. [19] Holst T L. Transonic flow computations using nonlinear potential methods[J]. Progress In Aerospace Sciences, 2000, 36(1):1-61. [20] Ngoc H. A numerical approach for assessing flow compressibility and transonic effect on airfoil aerodynamics[J]. Journal of Mechanical Science and Technology, 2020, 34(5):1-7. [21] Hwang F N, Su Y C, Cai X C. A parallel adaptive nonlinear elimination preconditioned inexact Newton method for transonic full potential equation[J]. Computers & Fluids, 2015, 110:96-107. [22] Young D P, Huffman W P, Melvin R G, Hilmes C L, Johnson F T. Nonlinear elimination in aerodynamic analysis and design optimization[G]. In Large-scale PDE-constrained optimization, pages 17-43. Springer, 2003. [23] Dennis J E, Schnabel R B. Numerical methods for unconstrained optimization and nonlinear equations[M]. SIAM, Philadelphia, 1996. [24] Dembo R S, Steihaug E T. Inexact Newton methods[J]. SIAM Journal on Numerical Analysis, 1982, 19(2):400-408. [25] Flueck A J, Chiang H D. Solving the nonlinear power flow equations with an inexact Newton method using GMRES[J]. IEEE Transactions on Power Systems, 2002, 13(2):267-273. [26] Eisenstat S C, Walker H F. Globally convergent inexact Newton methods[J]. SIAM Journal on Optimization, 1994, 4(2):393-422. [27] Saad Y, Schultz M H. GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3):856-869. [28] Balay S, Abhyankar S, Adams M F, Brown J, Brune P, Buschelman K, Dalcin L, A. D, Eijkhout V, Gropp W D, D. K, Kaushik D, Knepley M G, A. M D, McInnes L C, T. M R, T. M, Rupp K, P. S, Smith B F, Zampini S, Zhang H, Zhang H. PETSc web page http://www.mcs.anl.gov/petsc[M]. 2021. |
[1] | 杜玉龙, 徐凯文, 赵昆磊, 袁礼. 基于PHG平台的非结构四面体网格欧拉方程间断有限元并行求解器[J]. 数值计算与计算机应用, 2021, 42(2): 155-168. |
[2] | 邓维山, 徐进. 一种泊松-玻尔兹曼方程稳定算法的高效有限元并行实现[J]. 数值计算与计算机应用, 2018, 39(2): 91-110. |
[3] | 吴长茂, 杨超, 尹亮, 刘芳芳, 孙乔, 李力刚. 基于CPU-MIC异构众核环境的行星流体动力学数值模拟[J]. 数值计算与计算机应用, 2017, 38(3): 197-214. |
[4] | 宋梦召, 冯仰德, 聂宁明, 王武. 基于空位跃迁的KMC并行实现[J]. 数值计算与计算机应用, 2017, 38(2): 130-142. |
[5] | 刘辉, 冷伟, 崔涛. 并行自适应有限元计算中的负载平衡研究[J]. 数值计算与计算机应用, 2015, 36(3): 166-184. |
[6] | 刘辉, 崔涛, 冷伟. hp自适应有限元计算中一种新的自适应策略[J]. 数值计算与计算机应用, 2015, 36(2): 100-112. |
[7] | 吴立飞, 杨晓忠, 张帆. 非线性Leland方程的一种并行本性差分方法[J]. 数值计算与计算机应用, 2014, 35(1): 69-80. |
[8] | 段班祥, 朱小平, 张爱萍. 解线性互补问题的并行交替迭代算法[J]. 数值计算与计算机应用, 2011, 32(3): 183-195. |
[9] | 王顺绪, 戴华. 二次特征值问题的并行Jacobi-Davidson方法及其应用[J]. 数值计算与计算机应用, 2008, 29(4): 313-320. |
[10] | 姜金荣,迟学斌,陆忠华,刘洪利. 在MM5中实现IKAWA参数自适应选择[J]. 数值计算与计算机应用, 2007, 28(3): 215-220. |
[11] | 李永刚,欧阳洁,肖曼玉. 基于时间分解求解时间依赖问题的并行算法研究[J]. 数值计算与计算机应用, 2007, 28(1): 27-37. |
[12] | 余胜生,文元桥,周敬利. 隧道算法的分布式并行计算模型[J]. 数值计算与计算机应用, 2006, 27(4): 299-306. |
[13] | 曹建文,刘洋,孙家昶,姚继锋,潘峰. 大规模油藏数值模拟软件并行计算技术及在Beowulf系统上的应用进展[J]. 数值计算与计算机应用, 2006, 27(2): 86-95. |
[14] | 吕桂霞,马富明. 二维热传导方程有限差分区域分解算法[J]. 数值计算与计算机应用, 2006, 27(2): 96-105. |
[15] | 盛志强,刘兴平,崔霞. 对抛物方程使用新显格式的区域分解算法[J]. 数值计算与计算机应用, 2005, 26(4): 249-261. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||