• 论文 • 上一篇    

Krylov子空间法求解非对称代数Riccati方程

杨玉凤, 郭晓霞   

  1. 中国海洋大学数学科学学院, 青岛 266100
  • 收稿日期:2021-10-04 发布日期:2022-12-08
  • 通讯作者: 郭晓霞, Email: guoxiaoxia@ouc.edu.cn.
  • 基金资助:
    国家自然科学基金(11871444)和中央高校基本科研业务费专项资金(201562012)资助.

杨玉凤, 郭晓霞. Krylov子空间法求解非对称代数Riccati方程[J]. 数值计算与计算机应用, 2022, 43(4): 447-456.

Yang Yufeng, Guo Xiaoxia. A KRYLOV SUBSPACE METHOD FOR THE NONSYMMETRIC ALGEBRAIC RICCATI EQUATION[J]. Journal on Numerica Methods and Computer Applications, 2022, 43(4): 447-456.

A KRYLOV SUBSPACE METHOD FOR THE NONSYMMETRIC ALGEBRAIC RICCATI EQUATION

Yang Yufeng, Guo Xiaoxia   

  1. School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China
  • Received:2021-10-04 Published:2022-12-08
文献[1]给出了求解对称代数Riccati方程的Krylov子空间迭代法.本文利用该思想,提出了求解非对称代数Riccati方程的Krylov子空间迭代法.通过Cayley变换,我们得到了该方法的一个非常简洁的迭代公式,该公式只涉及矩阵计算.利用该公式,收敛性证明也变得非常简单易懂.最后数值算例验证了算法的可行性和有效性.
The Krylov subspace iteration method for algebraic Riccati equation has been presented in [1]. In this paper, the Krylov invariant subspace iteration for solving the nonsymmetric algebraic Riccati equation is proposed. A very concise iterative formula is obtained by the Cayley transformation, which only involves matrix calculation. Furthermore, the proof of convergence becomes very simple and accessible. Finally, numerical experiments show that the proposed algorithm is feasible and effective.

MR(2010)主题分类: 

()
[1] Lin Y, Simoncini V. A new subspace iteration method for the algebraic Riccati equation[J]. Numer. Linear Algebra with Appl, 2015, 22:26-47.
[2] Cuo C H. Nonsymmetric algebraic Riccati equations and Winner-Hopf factorization for M-matrices[J]. SIAM J. Matrix Anal. Appl, 2001, 23:225-242.
[3] Cuo C, Higham N. Iteration solution of a nonsymmetric algebraic Riccati equation[J]. SIAM J. Matrix Anal. Appl, 2007, 29:396-412.
[4] Juang J. Existence of algebraic matrix Riccati equations arising in transport theory[J]. Linear Algebra Appl, 1995, 230:89-100.
[5] Wang W G, Wang W C, and Li R C. Alternating directional doubling algorithm for M-Matrix algebraic Riccati equations[J]. SIAM J. Matrix Anal. Appl, 2012, 33(1):170-194.
[6] Xue J G, Li R C. Highly accurate doubling algorithm for M-matrix algebraic Riccati equations[J]. Numer. Math., 2017, 135:733-767.
[7] Liu C L, Xue J G, Li R C. Accurate numerical solution for shifted M-matrix algebraic Riccati equation[J]. Journal of Scientific Computiong, 2020, 84:15.
[8] 徐树方. 控制论中的矩阵计算[M]. 北京:高等教育出版社, 2001:204-301.
[9] Bai Z Z, Guo X X, Xu S F. Alternately linearized implicit iteration methods for the minimal nonnegative solutions of the nonsymmetric algebraic Riccati equations[J]. Numerical Linear Algebra with Applications, 2006, 13(8):655-674.
[10] Guo C H, Laub A. On the iterative solution of a class of nonsymmetric algebraic Riccati equations[J]. SIAM J. Matrix Analy. Appl, 2000, 22:376-391.
[11] Guo C H, Lancaster P. Analysis and modification of Newton s method for algebraic Riccati equations[J]. Math. Comp, 1998, 67:1089-1105.
[12] Guo X X, Lin W W, Xu S F. A structure-preserving doubling algorithm for nonsysmmetric algebraic Riccati equation[J]. Numer. Math, 2006, 103(3):393-412.
[13] Mconald J J, Nandi R, et al, M-Matrix and inverse M-matrix extensions[J]. Spec.Matrices, 2020, 8:186-203.
[14] Berman A, Plemmons R J. Nonnegative matrices in the mathematical sciences[M]. Academic Press, 1979.
[15] Varga R S. Matrix Iterative Analysis[M]. Prentice-Hall, Englewood Cliffs, NJ, 1962.
[16] Meyer C D. Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems[J]. SIAM Rev, 1989, 31:240-272.
[1] 王淑娟, 郭晓霞. 关于非对称代数Riccati方程的ALI迭代算法收敛速率的讨论[J]. 数值计算与计算机应用, 2010, 31(1): 76-80.
阅读次数
全文


摘要