• 论文 • 上一篇
胡文玉1, 郑伟东1, 黄进红1, 喻高航2
胡文玉, 郑伟东, 黄进红, 喻高航. 基于近似稀疏正则化的低秩张量填充算法[J]. 数值计算与计算机应用, 2023, 44(1): 53-67.
Hu Wenyu, Zheng Weidong, Huang Jinhong, Yu Gaohang. APPROXIMATE SPARSITY REGULARIZED LOW-RANK TENSOR COMPLETION[J]. Journal on Numerica Methods and Computer Applications, 2023, 44(1): 53-67.
Hu Wenyu1, Zheng Weidong1, Huang Jinhong1, Yu Gaohang2
MR(2010)主题分类:
分享此文:
[1] Wang Y, Meng D, Yuan M, Sparse recovery:from vectors to tensors[J]. Natl Sci Rev, 2018, 5:756-767. [2] Yokota T, Lee N, Cichocki A. Robust multilinear tensor rank estimation using higher order singular value decomposition and information criteria[J]. IEEE Trans Signal Proces, 2016, 65(5):1196-1206. [3] Sobral A, Zahzah E. Matrix and tensor completion algorithms for background model initialization:A comparative evaluation[J]. Pattern Recogn Lett, 2017, 96:22-33. [4] Varghees V N, Manikandan M S, Gini R. Adaptive MRI image denoising using total-variation and local noise estimation[C]. In:Proceedings of International Conference on Advances in Engineering, Science And Management (ICAESM-2012), 2012. 506-511. [5] Zhao X L, Wang F, Huang T Z, et al. Deblurring and sparse unmixing for hyperspectral images[J]. IEEE Trans Geosci Remote Sens, 2013, 51(7):4045-4058. [6] Chen Y, Huang T Z, Zhao X L, et al. Hyperspectral image restoration using framelet-regularized low-rank nonnegative matrix factorization[J]. Appl Math Model, 2018, 63:128-147. [7] Jiang T X, Huang T Z, Zhao X L, et al. Fastderain:A novel video rain streak removal method using directional gradient priors[J]. IEEE Trans Image Process, 2018, 28(4):2089-2102. [8] Wang Y G, Huang T Z, Zhao X L, et al. Video deraining via nonlocal low-rank regularization[J]. Appl Math Model, 2020, 79:896-913. [9] Sidiropoulos N D, De Lathauwer L, Fu X, et al. Tensor decomposition for signal processing and machine learning[J]. IEEE Trans Image Process, 2017, 65(13):3551-3582. [10] Liu J, Musialski P, Wonka P, et al. Tensor completion for estimating missing values in visual data[J]. IEEE Trans Pattern Anal Mach Intell, 2012, 35(1):208-220. [11] Tan H, Cheng B, Wang W, et al. Tensor completion via a multi-linear low-n-rank factorization model[J]. Neurocomputing, 2014, 133:161-169. [12] Hillar C J, Lim L H. Most tensor problems are NP-hard[J]. J ACM, 2013, 60(6):1-39. [13] Gandy S, Recht B, Yamada I. Tensor completion and low-n-rank tensor recovery via convex optimization[J]. Inverse Prob, 2011, 27(2):025010. [14] Romera-Paredes B, Pontil M. A new convex relaxation for tensor completion[C]. In:Proceedings of Advances in Neural Information Processing Systems, 2013. 2967-2975. [15] Li Y F, Shang K, Huang Z H. Low Tucker rank tensor recovery via ADMM based on exact and inexact iteratively reweighted algorithms[J]. J Comput Appl Math, 2018, 331:64-81. [16] Liu C S, Shan H, Chen C L, Tensor p-shrinkage nuclear norm for low-rank tensor completion[J]. Neurocomputing, 2020, 387:255-267. [17] Ji T Y, Huang T Z, Zhao X L, et al. A non-convex tensor rank approximation for tensor completion[J]. Appl Math Model, 2017, 48:410-422. [18] Xue J Z, Zhao Y Q, Liao W Z, et al. Nonconvex tensor rank minimization and its applications to tensor recovery[J]. Inform Sci, 2019, 53:109-128. [19] Mu C, Huang B, Wright J, et al. Square deal:Lower bounds and improved relaxations for tensor recovery[C]. In:Proceedings of International conference on machine learning, 2014. 73-81. [20] Bai M, Zhang X, Ni G, et al. An adaptive correction approach for tensor completion[J]. SIAM J Imaging Sci, 2016, 9(3):1298-1323. [21] Xu Y, Hao R, Yin W, et al. Parallel matrix factorization for low-rank tensor completion[J]. Inverse Probl Imag, 2015, 9(2):601-624. [22] Wen Z, Yin W, Zhang Y. Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm[J]. Math Program Comput, 2012, 4(4):333-361. [23] Zhao X L, Wang W, Zeng T Y, et al. Total variation structured total least squares method for image restoration[J]. SIAM J Sci Comput, 2013, 35(6):1304-1320. [24] Chan T F, Vese L A. Active contours without edges[J]. IEEE Trans Image Process, 2001, 10(2):266-277. [25] Chan S H, Khoshabeh R, Gibson K B, et al. An augmented Lagrangian method for total variation video restoration[J]. IEEE Trans Image Process, 2011, 20(11):3097-3111. [26] Ji T Y, Huang T Z, Zhao X L, et al. Tensor completion using total variation and low-rank matrix factorization[J]. Inform Sci, 2016, 326:243-257. [27] Jiang T X, Huang T Z, Zhao X L, et al. Matrix factorization for low-rank tensor completion using framelet prior[J]. Inform Sci, 2018, 436:403-417. [28] Shen L, Xu Y, Zhang N. An approximate sparsity model for inpainting[J]. Appl Comput Harmon Anal, 2014, 37(1):171-184. [29] Kolda T G, Bader B W. Tensor decompositions and applications[J]. SIAM Rev, 2009, 51(3):455-500. [30] Razaviyayn M, Hong M, Luo Z Q. A unified convergence analysis of block successive minimization methods for nonsmooth optimization[J]. SIAM J Optimiz, 2013, 23(2):1126-1153. [31] Li Q, Shen L, Xu Y, et al. Multi-step fixed-point proximity algorithms for solving a class of optimization problems arising from image processing[J]. Adv Comput Math, 2015, 41(2):387-422. |
[1] | 谢力, 王武, 冯仰德. 基于多层半可分结构矩阵的快速算法与并行实现[J]. 数值计算与计算机应用, 2017, 38(1): 37-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||