• 论文 • 上一篇
董灏1, 崔俊芝2, 聂玉峰3
董灏, 崔俊芝, 聂玉峰. 周期复合材料结构高阶多尺度方法的数值精度提高策略[J]. 数值计算与计算机应用, 2023, 44(1): 12-24.
Dong Hao, Cui Junzhi, Nie Yufeng. THE IMPROVEMENT STRATEGY OF NUMERICAL ACCURACY OF HIGH-ORDER MULTI-SCALE METHOD FOR PERIODIC COMPOSITE STRUCTURES[J]. Journal on Numerica Methods and Computer Applications, 2023, 44(1): 12-24.
Dong Hao1, Cui Junzhi2, Nie Yufeng3
MR(2010)主题分类:
分享此文:
[1] Cioranescu D, Donato P. An introduction to homogenization[M]. Oxford:Oxford University Press, 1999. [2] Ming P, Zhang P. Analysis of the heterogeneous multiscale method for elliptic homogenization problems[J]. Journal of the American Mathematical Society, 2005, 18(1):121-156. [3] Hughes T J R, Feijóo G R, Mazzei L, et al. The variational multiscale method-a paradigm for computational mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 166(1-2):3-24. [4] Hou T Y, Wu X H. A multiscale finite element method for elliptic problems in composite materials and porous media[J]. Journal of Computational Physics, 1997, 134(1):169-189. [5] Xing Y F, Du C Y. An improved multiscale eigenelement method of periodical composite structures[J]. Composite Structures, 2014, 118:200-207. [6] Zhong Y F, Chen L, Yu W B, et al. Variational asymptotic micromechanics modeling of heterogeneous magnetostrictive composite materials[J]. Composite Structures, 2013, 106:502-509. [7] Målqvist A, Peterseim D. Localization of elliptic multiscale problems[J]. Mathematics of Computation, 2014, 83(290):2583-2603. [8] Cui J Z, Cao L Q. Finite element method based on two-scale asymptotic analysis[J]. Mathematica Numerica Sinica, 1998, 20(1):89-102. [9] Li Y, Cui J. Two-scale analysis method for predicting heat transfer performance of composite materials with random grain distribution[J]. Science in China Series A:Mathematics, 2004, 47(1):101-110. [10] Yang Z, Zhang Y, Dong H, et al. High-order three-scale method for mechanical behavior analysis of composite structures with multiple periodic configurations[J]. Composites Science and Technology, 2017, 152:198-210. [11] Dong H, Cui J, Nie Y, et al. High-order three-scale computational method for heat conduction problems of axisymmetric composite structures with multiple spatial scales[J]. Advances in Engineering Software, 2018, 121:1-12. [12] Cao L Q, Cui J Z, Zhu D C. Multiscale asymptotic analysis and numerical simulation for the second order Helmholtz equations with rapidly oscillating coefficients over general convex domains[J]. SIAM Journal on Numerical Analysis, 2002, 40(2):543-577. [13] Feng Y P, Cui J Z. Multi-scale analysis and FE computation for the structure of composite materials with small periodic configuration under condition of coupled thermoelasticity[J]. International Journal for Numerical Methods in Engineering, 2004, 60(11):1879-1910. [14] Dong H, Nie Y, Yang Z, et al. The numerical accuracy analysis of asymptotic homogenization method and multiscale finite element method for periodic composite materials[J]. CMESComputer Modeling in Engineering & Sciences, 2016, 111(5):395-419. [15] Gao Y, Xing Y, Huang Z, et al. An assessment of multiscale asymptotic expansion method for linear static problems of periodic composite structures[J]. European Journal of Mechanics-A/Solids, 2020, 81:103951. [16] Xing Y F, Chen L. Accuracy of multiscale asymptotic expansion method[J]. Composite Structures, 2014, 112:38-43. [17] 朱晓鹏, 陈磊, 黄俊. 复合材料周期结构数学均匀化方法的一种新型单胞边界条件[J]. 计算力学学报, 2021,38(3):401-410. [18] Matine A, Boyard N, Legrain G, et al. Transient heat conduction within periodic heterogeneous media:A space-time homogenization approach[J]. International Journal of Thermal Sciences, 2015, 92:217-229. [19] Cao L Q, Cui J Z, Zhu D C. Multiscale asymptotic analysis and numerical simulation for the second order Helmholtz equations with rapidly oscillating coefficients over general convex domains[J]. SIAM Journal on Numerical Analysis, 2002, 40(2):543-577. [20] Allegretto W, Cao L, Lin Y. Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients[J]. Discrete & Continuous Dynamical Systems, 2008, 20(3):543-576. |
[1] | 付姚姚, 曹礼群, 马楚鹏. 有界区域Weyl规范下具有周期间断系数Maxwell-Dirac系统多尺度算法[J]. 数值计算与计算机应用, 2019, 40(2): 111-129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||