• 论文 • 上一篇
刘新儒1,2, 任燕3, 王海波1, 刘圣军1,2
刘新儒, 任燕, 王海波, 刘圣军. 空间曲线的拟插值重建[J]. 数值计算与计算机应用, 2023, 44(1): 68-80.
Liu Xinru, Ren Yan, Wang Haibo, Liu Shengjun. QUASI-INTERPOLATION RECONSTRUCTION FOR SPACE CURVES[J]. Journal on Numerica Methods and Computer Applications, 2023, 44(1): 68-80.
Liu Xinru1,2, Ren Yan3, Wang Haibo1, Liu Shengjun1,2
MR(2010)主题分类:
分享此文:
[1] 张继红, 王瑞林. 一种新的MQ径向基函数拟插值格式[J]. 大连交通大学学报, 2017, 38(5):118-120. [2] Beatson R, Powell M. Univariate multiquadric approximation:quasi-interpolation to scattered data[J]. Constructive Approximation, 1992, 8(3):275-288. [3] Wu Z, Robert S. Shape preserving properties and convergence of univariate multiquadric quasiinterpolation[J]. Acta Mathematicae Applicatae Sinica, 1994, 10(4):441-446. [4] Wang R H, Xu M, Fang Q. A kind of improved univariate multiquadric quasi-interpolation operators[J]. Computers & mathematics with applications, 2010, 59(1):451-456. [5] Ling L. A univariate quasi-multiquadric interpolationwith better smoothness[J]. Computers & Mathematics with Applications, 2004, 48(5-6):897-912. [6] Chen R, Han X, Wu Z. A multiquadric quasi-interpolation with linear reproducing and preserving monotonicity[J]. Journal of computational and applied mathematics, 2009, 231(2):517-525. [7] Feng R, Li F. A quasi-interpolation satisfying quadratic polynomial reproduction property and shape-preserving property to scattered data[J]. Journal of Computational and Applied Mathematics, 2009, 225:594-601. [8] 陈荣华, 韩旭里, 吴宗敏. 一种新的Multiquadric拟插值[J]. 工程图学学报, 2010, 31(3):117-121. [9] Gao W, Wu Z. Quasi-interpolation for linear functional data[J]. Journal of Computational and Applied Mathematics, 2012, 236(13):3256-3264. [10] 陈荣荣. MQ拟插值算子的构造及其相关性质[D]. Master's thesis, 东北师范大学, 2015. [11] Feng R, Zhou X. A kind of multiquadric quasi-interpolation operator satisfying any degree polynomial reproduction property to scattered data[J]. Journal of computational and applied mathematics, 2011, 235(5):1502-1514. [12] Ling L. Multivariate quasi-interpolation schemes for dimension-splitting multiquadric[J]. Applied mathematics and computation, 2005, 161(1):195-209. [13] Wu R, Wu T, Li H. A family of multivariate multiquadric quasi-interpolation operators with higher degree polynomial reproduction[J]. Journal of Computational and Applied Mathematics, 2015, 274:88-108. [14] Feng R, Peng S. Quasi-interpolation scheme for arbitrary dimensional scattered data approximation based on natural neighbors and RBF interpolation[J]. Journal of Computational and Applied Mathematics, 2018, 329:95-105. [15] 丛伟. 拟合任意空间曲线曲面的三角函数法[J]. 沈阳航空工业学院学报, 2001, 1:69-70. [16] 吴暐, 罗良玲, 田华. 空间曲线拟合算法的研究[J]. 南昌大学学报:工科版, 2004, 26(3):38-40. [17] Zhao X, Zhu X, Fan H. Research of space curve fitting based on FBG sensor technology[J]. Procedia Engineering, 2011, 15:1764-1770. [18] Di H. Space curve fitting method based on fiber-optic curvature gages[J]. Optics & Laser Technology, 2012, 44(1):290-294. [19] Liu X, Wang Y. Research of automatically piecewise polynomial curve-fitting method based on least-square principle[J]. Science Technology and Engineering, 2014, 14(3):55-58. [20] Xue L. Piecewise Curve Fitting Based on Least Square Method in 3D Space[J]. International Journal of Mathematical Physics, 2020, 3(1):7-11. [21] 凌海雅, 赵仕卿, 陆利正, 汪国昭. 空间曲线基于内在几何量的高质量采样和B样条拟合[J]. 计算机辅助设计与图形学学报, 2020, 32(2):255-261. [22] 刘明慧. 径向基函数基本理论及其应用[D]. Master's thesis, 东北师范大学, 2015. [23] Feng R, Li F. A shape-preserving quasi-interpolation operator satisfying quadratic polynomial reproduction property to scattered data[J]. Journal of computational and applied mathematics, 2009, 225(2):594-601. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||