• 青年评述 •    下一篇

油藏数值模拟中的线性解法器

张晨松   

  1. 中国科学院数学与系统科学院, 计算数学研究所 国家数学与交叉科学中心, 科学与工程计算国家重点实验室, 北京 100190
  • 收稿日期:2021-12-23 出版日期:2022-03-14 发布日期:2022-03-07
  • 作者简介:张晨松,博士,中国科学院数学与系统科学研究院副研究员,博士生导师.1999年和2002年分别获南京大学计算数学学士和硕士学位,2007年获得美国马里兰大学应用数学博士学位.他的主要研究方向为自适应有限元方法、多层迭代法及其在油气开发、流固耦合等问题中的应用.现担任《数值计算与计算机应用》编委.

张晨松. 油藏数值模拟中的线性解法器[J]. 数值计算与计算机应用, 2022, 43(1): 1-26.

Zhang Chensong. LINEAR SOLVERS FOR PETROLEUM RESERVOIR SIMUILATION[J]. Journal on Numerica Methods and Computer Applications, 2022, 43(1): 1-26.

LINEAR SOLVERS FOR PETROLEUM RESERVOIR SIMUILATION

Zhang Chensong   

  1. LSEC, NCMIS, Institute of Computational Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2021-12-23 Online:2022-03-14 Published:2022-03-07
中国的含油气地层分布广泛,但地质结构复杂,天然能量不足,开采难度高.油藏数值模拟方法与软件是油藏工程师对油藏进行分析和管理的重要工具,是油气藏开发后期确定剩余油分布、挖掘生产潜力和提高采收率的主要手段之一.精细地质模型可以达到很高的空间分辨率,导致网格数目巨大,模拟难度大、代价高,这给数值算法研究带来很多新挑战.本文以一个简化组分模型为例,简单介绍了其数学模型、离散方法、求解方法、并行计算和软件实现,其中着重介绍了几种被工业级软件采用的预条件方法和解耦方法.
The oil- and gas-bearing formations are widely distributed in China, but the geological structure is complex and the natural energy is usually not sufficient. Numerical simulation methods and software are important tools for reservoir engineers to analyze and manage reservoirs and are among the main tools for determining the remaining oil distribution and enhancing oil/gas recovery ratios in the late stage of reservoir development. The fine geological models increase the spatial resolution, leading to a huge number of grid cells and costly simulation runs, which present many new challenges to numerical algorithms. In this paper, we briefly introduce a simplified composition model, its mathematical model, discretization methods, solution methods, parallel computation, and implementation, with emphasis on several preconditioning and decoupling methods now adopted by commercial and industrial software.

MR(2010)主题分类: 

()
[1] FASP solver project, http://www.multigrid.org/fasp/, Last updated in November, 2021.
[2] Open Porous Media Initiative, https://opm-project.org/, Last updated in November, 2021.
[3] OpenCAEPoro:Multicomponent Multiphase Porous Media Flow Simulator, https://faspdevteam.github.io/OpenCAEPoro, Last updated in November, 2021.
[4] TOUGH:Suite of Simulators for Nonisothermal Multiphase Flow and Transport in Fractured Porous Media, https://tough.lbl.gov/, Last updated in November, 2021.
[5] Freely Available Software for Linear Algebra, http://www.netlib.org/utk/people/JackDongarra/la-sw.html, Last updated in September, 2018.
[6] Aavatsmark I. An introduction to multipoint flux approximations for quadrilateral grids[J]. Computational Geosciences, 2002, 6(3-4):405-432.
[7] Aavatsmark I, Eigestad G T, Mallison B T, and Nordbotten J M. A compact multipoint flux approximation method with improved robustness[J]. Numerical Methods for Partial Differential Equations, Sep 2008, 24(5):1329-1360.
[8] Abou-Kassem J H, Islam M R, and Farouq Ali S. Petroleum Reservoir Simulation (Second Edition)[M]. Gulf Professional Publishing, 2020.
[9] Al-Shaalan T M, Klie H M, Dogru A H, and Wheeler M F. Studies of robust two stage preconditioners for the solution of fully implicit multiphase flow problems. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2009.
[10] Anderson E and Saad Y. Solving sparse triangular linear systems on parallel computers[J]. International Journal of High Speed Computing, 1989, 01:73-95.
[11] Appleyard J and Cheshire I. Nested factorization. In 7th SPE Symposium on Reservoir Simulation. Society of Petroleum Engineers, 1983.
[12] Appleyard J, Cheshire I, and Pollard R. Special techniques for fully implicit simulators. In Proc. European Symp. on Enhanced Oil Recovery, Bournemouth, UK, 1981, 395-408.
[13] Aziz K and Settari A. Petroleum reservoir simulation[M]. Applied Science Publishers, 1979.
[14] Aziz K and Settari A. Petroleum reservoir simulation[M]. Elsevier Applied Science Publishers, 1986.
[15] Baker A H, Jessup E R, and Manteuffel T. A Technique for Accelerating the Convergence of Restarted GMRES[J]. SIAM Journal on Matrix Analysis and Applications, 2005, 26(4):962-984.
[16] Bank R E, Chan T F, Coughran Jr W M, and Smith R K. The alternate-block-factorization procedure for systems of partial differential equations[J]. BIT Numerical Mathematics, 1989, 29(4):938-954.
[17] Bear J. Dynamics of Fluids in Porous Media[M]. Dynamics of Fluids in Porous Media, 1972.
[18] Behie A. Comparison of Nested Factorization, Constrained Pressure Residual, and Incomplete Factorization Preconditionings[D]. SPE Reservoir Simulation Conference, 1985. SPE-13531-MS.
[19] Behie A and Vinsome P K W. Block iterative methods for fully implicit reservoir simulation[J]. SPE Journal, 1982, 22(05):658-668.
[20] Behie G A and Forsyth P A, Jr. Incomplete factorization methods for fully implicit simulation of enhanced oil recovery[J]. SIAM Journal on Scientific and Statistical Computing, 1984, 5(3):543-561.
[21] Benzi M and Tuma M. A sparse approximate inverse preconditioner for nonsymmetric linear systems[J]. SIAM Journal on Scientific Computing, 1998, 19(3):968-994.
[22] Brandt A. Algebraic multigrid theory:The symmetric case[J]. Applied Mathematics and Computation, 1986, 19(1-4):23-56.
[23] Brandt A, McCormick S, and Ruge J. Algebraic multigrid (AMG) for automatic multigrid solutions with application to geodetic computations[R]. Report, Inst. for computational Studies,Fort collins, Colo, 1982.
[24] Brandt A, McCormick S, and Ruge J W. Algebraic multigrid for sparse matrix equations[M]. In D. Evans, editor, Sparsity and its Application, pages 257-284. Cambridge University Press, 1984.
[25] Cai X C and Sarkis M. A restricted additive schwarz preconditioner for general sparse linear systems[J]. SIAM Journal on Scientific Computing, 1999, 21(2):792-797.
[26] Cao H. Development of techniques for general purpose simulators[D]. Thesis, Stanford University, 2002.
[27] Chan T F and Goovaerts D. A note on the efficiency of domain decomposed incomplete factorizations[J]. SIAM Journal on Scientific and Statistical Computing, 1990, 11(4):794-803.
[28] Chen Z, Huan G, and Ma Y. Computational methods for multiphase flows in porous media[M]. Society for Industrial and Applied Mathematics, 2006.
[29] Chen Z, Liu H, and Yang B. Accelerating iterative linear solvers using multiple graphical processing units[J]. International Journal of Computer Mathematics, 2015, 92(7):1422-1438.
[30] Coats K H. A note on IMPES and some IMPES-based simulation models[J]. SPE Journal, 2000, 5(03):245-251.
[31] Collins D A, Nghiem L X, Li Y K, and Grabonstotter J E. An efficient approach to adaptiveimplicit compositional simulation with an equation of state[J]. SPE Reservoir Engineering, 1992, 7(02).
[32] Davis T A. Algorithm 832:UMFPACK v4.3-an unsymmetric-pattern multifrontal method[J]. ACM Trans. Math. Softw., 2004, 30(2):196-199.
[33] Davis T A. Direct methods for sparse linear systems[M]. SIAM, 2006, 2.
[34] Davis T A, Rajamanickam S, and Sid-Lakhdar W M. A survey of direct methods for sparse linear systems[J]. Acta Numerica, 2016, 25:383-566.
[35] Dogru A H, Fung L S K, Middya U, Al-Shaalan T, and Pita J A. A next-generation parallel reservoir simulator for giant reservoirs[R]. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2009.
[36] Dongarra J J, Duff I S, Sorensen D C, and van der Vorst H A. Numerical Linear Algebra for High-Performance Computers[M]. Society for Industrial and Applied Mathematics, 1998.
[37] Dryja M and Widlund O. Additive schwarz methods for elliptic finite element problems in three dimensions[M]. In Fifth International Conference on Domain Decomposition Methods. SIAM, 1992.
[38] Dryja M and Widlund O B. Some domain decomposition algorithms for elliptic problems. In Iterative Methods for Large Linear Systems[M]. Academic Press Professional, Inc., 1989.
[39] Golub G H and Van Loan C F. Matrix Computations, Third Edition, volume 10 of Johns Hopkins Studies in the Mathematical Sciences[M]. Johns Hopkins University Press, 1996.
[40] Gould N I M, Scott J A, and Hu Y. A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations[J]. ACM Trans. Math. Softw., 2007, 33(2):10-es.
[41] Greenbaum A, Ptak V, and Strakos Zdenek. Any nonincrease convergence curve is possible for GMRES[J]. SIAM J. Matrix Anal. Appl., 1996, 17(3):465-469.
[42] Gries S, Stuben K, Brown G L, Chen D, and Collins D A. Preconditioning for efficiently applying algebraic multigrid in fully implicit reservoir simulations[J]. SPE Journal, 2014, 19(04).
[43] Guan W, Qiao C, Zhang H, Zhang C S, Zhi M, Zhu Z, Zheng Z, Ye W, Zhang Y, Hu X, Li Z, Feng C, Xu Y, and Xu J. On Robust and Efficient Parallel Reservoir Simulation on Tianhe-2[C].In SPE Reservoir Characterisation and Simulation Conference, 2015.
[44] Hackbusch W. Multi-grid methods and applications[M]. Springer, 1985.
[45] Hayder M E, Baddourah M, and Aramco S. SPE 152414 Challenges in High Performance Computing for Reservoir Simulation[C]. In EAGE Annual Conference & Exhibition, June, 2012:4-7.
[46] Hu X, Liu W, Qin G, Xu J, and Zhang Z. Development of a fast auxiliary subspace pre-conditioner for numerical reservoir simulators. In SPE Reservoir Characterisation and Simulation Conference and Exhibition. Society of Petroleum Engineers, 2011.
[47] Hu X, Wu S, Wu X H, Xu J, Zhang C S, Zhang S, and Zikatanov L. Combined preconditioning with applications in reservoir simulation[J]. Multiscale Modeling & Simulation, 2013, 11(2):507-521.
[48] Hu X, Xu J, and Zhang C. Application of auxiliary space preconditioning in field-scale reservoir simulation[J]. Science China Mathematics, 2013, 56(12):2737-2751.
[49] Jiang Y and Tchelepi H A. Scalable multistage linear solver for coupled systems of multisegment wells and unstructured reservoir models. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2009.
[50] Klie H. Krylov-secant methods for solving large scale systems of coupled nonlinear parabolic equations[D]. Ph.D. thesis, Rice University, 1997.
[51] Knoll D A and Keyes D E. Jacobian-free Newton-Krylov methods:a survey of approaches and applications[J]. Journal of Computational Physics, 2004, 193(2):357-397.
[52] Kwok W H F. Scalable linear and nonlinear algorithms for multiphase flow in porous media[D]. PhD thesis, Stanford University, 2007.
[53] Lacroix S, Vassilevski Y V, and Wheeler M F. Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS)[J]. Numerical Linear Algebra With Applications, 2001, 8(8):537-549.
[54] Lee Y, Wu J, Xu J, and Zikatanov L. Robust subspace correction methods for nearly singular systems[J]. Mathematical Models and Methods in Applied Sciences, 2007, 17(11):1937-1963.
[55] LeVeque R J. Finite volume methods for hyperbolic problems[M]. Cambridge University Press, 2002, 31.
[56] Li R, Yang H, and Yang C. Parallel multilevel restricted schwarz preconditioners for implicit simulation of subsurface flows with peng-robinson equation of state[J]. Journal of Computational Physics, 2020, 109745.
[57] Li Z, Wu S, Li Q, Zhang C S, Wang B, Xu J, and Zhao Y. A New Linear Solver for Fine-Scale Reservoir Simulation[J]. Journal of Numerical Methods and Computer Applications, 2018, 39:1-9.
[58] Li Z, Wu S, Xu J J, and Zhang C S. Toward cost-effective reservoir simulation solvers on GPUs[J]. Advances in Applied Mathematics and Mechanics, 2016, 8(6):971-991.
[59] Li Z, Wu S, Zhang C S, Xu J, Feng C, and Hu X. Numerical studies of a class of linear solvers for fine-scale petroleum reservoir simulation[J]. Computing and Visualization in Science, 2017, 18(2):93-102.
[60] Lichtner P C, Hammond G E, Lu C, Karra S, Bisht G, Andre B, Mills R T, Kumar J, and Frederick J M. PFLOTRAN web page, 2020. http://www.pflotran.org.
[61] Lie K A. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave:User Guide for the MATLAB Reservoir Simulation Toolbox (MRST)[M]. Cambridge University Press, 2019.
[62] Liu H, Wang K, and Chen Z. A family of constrained pressure residual preconditioners for parallel reservoir simulations[J]. Numerical Linear Algebra With Applications, 2016, 23(1):120-146.
[63] Manteuffel T A, Münzenmaier S, Ruge J, and Southworth B S. Nonsymmetric reduction-based algebraic multigrid[J]. SIAM J. Sci. Comput., 2019, 41:S242-S268.
[64] Manteuffel T A, Ruge J, and Southworth B S. Nonsymmetric algebraic multigrid based on local approximate ideal restriction (lAIR)[J]. SIAM J. Sci. Comput., 2018, 40:A4105-A4130.
[65] Meijerink J and van der Vorst H. An iterative solution method for linear systems of which the coefficient matrix is a symmetric m-matrix[J]. Math. Comp., 1977, 31(137):148-162.
[66] Meijerink J and van der Vorst H. Guidelines for the usage of incomplete decompositions in solving sets of linear equations as they occur in practical problems[J]. Journal of Computational Physics, 1981, 44(1):134-155.
[67] Notay Y. Algebraic analysis of two-grid methods:The nonsymmetric case[J]. Numerical Linear Algebra with Applications, 2010, 17(1):73-96.
[68] Notay Y. Algebraic theory of two-grid methods[J]. Numerical Mathematics:Theory, Methods and Applications, 2015, 8(2):168-198.
[69] Odeh A S. Comparison of solutions to a three-dimensional black-oil reservoir simulation problem[J]. Journal of Petroleum Technology, 1981, 33(01):13-25.
[70] Peng D Y and Robinson D B. A rigorous method for predicting the critical properties of multicomponent systems from an equation of state[J]. AIChE Journal, 1977, 23(2):137-144.
[71] Qiao C. General purpose compositional simulation for multiphase reactive flow with a fast linear solver[M]. PhD thesis, the Pennsylvania State University, 2015.
[72] Qiao C, Wu S, Xu J, and Zhang C S. Analytical Decoupling Techniques for Fully Implicit Reservoir Simulation[J]. Journal of Computational Physics, 2017, 336:664-681.
[73] Ruge J W and Stüben K. Algebraic multigrid[J]. in Multigrid Methods, Frontiers Appl. Math., SIAM, Philadelphia, 1987, 3:73-130.
[74] Saad Y. A flexible inner-outer preconditioned gmres algorithm[J]. SIAM Journal on Scientific Computing, 1993, 14(2):461-469.
[75] Saad Y. Iterative methods for sparse linear systems[M]. SIAM, 2003.
[76] Saad Y and Schultz M H. Gmres:A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3):856-869.
[77] Saad Y and van der Vorst H A. Iterative solution of linear systems in the 20th century[J]. Journal of Computational and Applied Mathematics, 2000, 123(1):1-33. Numerical Analysis 2000. Vol. III:Linear Algebra.
[78] Scheichl R, Masson R, and Wendebourg J. Decoupling and block preconditioning for sedimentary basin simulations[J]. Computational Geosciences, 2003, 7(4):295-318.
[79] Stüben K, Clees T, Klie H, Lu B, and Wheeler M F. Algebraic multigrid methods (amg) for the efficient solution of fully implicit formulations in reservoir simulation[C]. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2007.
[80] Toselli A and Widlund O. Domain decomposition methods-algorithms and theory, volume 34. Springer Science & Business Media, 2004.
[81] Trangenstein J A and Bell J B. Mathematical structure of compositional reservoir simulation[J]. SIAM Journal on Scientific and Statistical Computing, 1989, 10(5):817-845.
[82] Trangenstein J A and Bell J B. Mathematical structure of the black-oil model for petroleum reservoir simulation[J]. SIAM Journal on Applied Mathematics, 1989, 49(3):749-783.
[83] Trottenberg U, Oosterlee C W, and Schuller A. Multigrid. Elsevier, 2000.
[84] Wallis J R. Incomplete gaussian elimination as a preconditioning for generalized conjugate gradient acceleration. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 1983.
[85] Wallis J R, Kendall R, Little T, and Nolen J. Constrained residual acceleration of conjugate residual methods. In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 1985.
[86] Wang K, Liu H, and Chen Z. A scalable parallel black oil simulator on distributed memory parallel computers[J]. Journal of Computational Physics, 2015, 301:19-34.
[87] Wang K, Liu H, Luo J, and Chen Z. A multi-continuum multi-phase parallel simulator for large-scale conventional and unconventional reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 33:483-496.
[88] Watts J W. A conjugate gradient-truncated direct method for the iterative solution of the reservoir simulation pressure equation[J]. SPE Journal, 1981, 1981(03).
[89] Wu S, Xu J, Feng C, Zhang C S, Li Q, Shu S, Wang B, Li X, and Li H. A Multilevel Preconditioner and Its Shared Memory Implementation for A New Generation Reservoir Simulator[J]. Petroleum Science, 2014, 11(4):540-549.
[90] Xu J. Iterative methods by space decomposition and subspace correction[J]. SIAM Review, 1992, 34:581-613.
[91] Xu J. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids[J]. Computing, 1996, 56:215-235.
[92] Xu J and Zikatanov L. The method of alternating projections and the method of subspace corrections in Hilbert space[J]. Journal of The American Mathematical Society, 2002, 15:573-597.
[93] Xu J and Zikatanov L. Algebraic multigrid methods[J]. Acta Numerica, 2017, 26:591-721.
[94] Xu X. Algebraic Theory of Multigrid Methods[D]. PhD thesis, University of Chinese Academy of Sciences, 2019.
[95] Xu X and Zhang C S. On the ideal interpolation operator in algebraic multigrid methods[J]. SIAM J. Numer. Anal., 2018, 56:1693-1710.
[96] Zhang M, Yang H, Wu S, and Sun S. Parallel multilevel domain decomposition preconditioners for monolithic solution of non-isothermal flow in reservoir simulation[J]. Computers & Fluids, 2022, 232:105183.
[97] 俞启泰, 罗洪. 我国陆上油田采收率以及系数评价[J]. 油气采收率技术, 2000.
[98] 冯春生. 油藏数值模拟中面向异构体系的多水平法及高效解法器研究[D]. PhD thesis, 湘潭大学, 2014.
[99] 刘伟峰. 高可扩展, 高性能和高实用的稀疏矩阵计算研究进展与挑战[J]. 数值计算与计算机应用, 2020, 41(4):259.
[100] 吴淑红, 张晨松, 王宝华, 冯春生, 许进超(编著). 油藏数值模拟中的线性代数求解方法[M]. 石油工业出版社, 2020.
[101] 徐小文. 并行代数多重网格算法:大规模计算应用现状与挑战[J]. 数值计算与计算机应用, 2019, 40(4):243.
[102] 曹建文. 大规模油藏数值模拟并行软件中的高效求解及预处理技术[D]. PhD thesis, 中国科学院软件所, 2002.
[103] 李政. 精细油藏数值模拟中的高效求解器研究[D]. PhD thesis, 昆明理工大学, 2017.
[104] 李淑霞, 谷建伟. 油藏数值模拟基础[M]. 中国石油大学出版社, 2009.
[105] 韩大匡. 准确预测剩余油相对富集区提高油田注水采收率研究[J]. 石油学报, 2007, 28(2):73-78.
[106] 韩大匡. 中国油气田开发现状, 面临的挑战和技术发展方向[J]. 中国工程科学, 2010, 12(5):51-57.
[1] 李政, 吴淑红, 李巧云, 张晨松, 王宝华, 许进超, 赵颖. 精细油藏模拟的一种线性求解算法[J]. 数值计算与计算机应用, 2018, 39(1): 1-9.
阅读次数
全文


摘要