• 论文 • 上一篇
范友康1, 卢荣伟2, 覃永辉1,2
范友康, 卢荣伟, 覃永辉. Volterra型积分方程的Galerkin Legendre Jacobi数值积分法[J]. 数值计算与计算机应用, 2023, 44(1): 81-94.
Fan Youkang, Lu Rongwei, Qin Yonghui. GALERKIN LEGENDRE JACOBI NUMERICAL INTEGRAL FOR VOLTERRA INTEGRAL EQUATIONS[J]. Journal on Numerica Methods and Computer Applications, 2023, 44(1): 81-94.
Fan Youkang1, Lu Rongwei2, Qin Yonghui1,2
MR(2010)主题分类:
分享此文:
[1] Bellen A, Jackiewicz Z, Vermiglio R, Zennaro M. Stability analysis of Runge-Kutta methods for Volterra integral equations of the second kind[J]. IMA Journal of Numerical Analysis, 1990, 10(1):103-118. [2] Linz P. Analytical and numerical methods for Volterra equations[M]. SIAM Studies in Applied Mathematics, Philadelphia PA. 1985. [3] Brunner H. Collocation methods for Volterra integral and related functional differential equations[M]. volume 15. Cambridge University Press, 2004. [4] Christine B. Spectral methods, in Handbook of Numerical Analysis, Part 5[M]. North-Holland, Amsterdam, 1997. [5] Boyd J P. Chebyshev and Fourier Spectral Methods[M]. Springer-Verlag, Berlin, 1989. [6] Guo B. Spectral methods and their applications[M]. World Scientific, Singapore, 1998. [7] Daniele F. Polynomial Approximations of Differential Equations[M]. Springer-Verlag, Berlin, 1992. [8] Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral methods, fundamental in single domains[M]. Springer, Berlin, 2006. [9] Shen J, Tang T, Wang L. Spectral methods, Algorithms, Analysis and Applications[M], volume 41. Springer, Heidelberg, 2011. [10] Babuška I, Janik T. The h-p version of the finite element method for parabolic equations. I. The p-version in time[J]. Numerical Methods for Partial Differential Equations, 1989, 5(4):363-399. [11] Schötzau D, Schwab C. Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method[J]. SIAM Journal on Numerical Analysis, 2000, 38(3):837-875. [12] Tal-Ezer H. Spectral methods in time for hyperbolic equations[J]. SIAM Journal on Numerical Analysis, 1986, 23(1):11-26. [13] Tang J, Ma H. Single and multi-interval Legendre τ-methods in time for parabolic equations[J]. Advances in Computational Mathematics, 2002, 17(4):349-367. [14] Guo B, Zhong W. Legendre-Gauss collocation methods for ordinary differential equations[J]. Advances in Computational Mathematics, 2009, 30(3):249-280. [15] Guo B, Wang Z. A spectral collocation method for solving initial value problems of first order ordinary differential equations[J]. Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 2010, 14(3):1029-1054. [16] Wang Z, Guo B. Legendre-Gauss-Radau collocation method for solving initial value problems of first order ordinary differential equations[J]. Journal of Scientific Computing, 2012, 52(1):226-255. [17] Elnagar G N, Kazemi M. Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations[J]. Journal of Computational and Applied Mathematics, 1996, 76(1-2):147-158. [18] Brunner H, Pedas A, Vainikko G. A spline collocation method for linear Volterra integrodifferential equations with weakly singular kernels[G]. volume 41, pages 891-900. 2001. BIT 40th Anniversary Meeting. [19] Brunner H, Crisci M R, Russo E, Vecchio A. k Continuous and discrete time waveform relaxation methods for Volterra integral equations with weakly singular kernels[J]. Ricerche di Matematica, 2002, 51(2):201-222(2003). [20] Chen Y, Tang T. Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel[J]. Mathematics of Computation, 2010, 79(269):147-167. [21] Shen J, Sheng C, Wang Z. Generalized Jacobi spectral-Galerkin method for nonlinear Volterra integral equations with weakly singular kernels[J]. Journal of Mathematical Study. Shuxue Yanjiu, 2015, 48(4):315-329. [22] Zhang C, Liu Z, Chen S, Tao D. New spectral element method for Volterra integral equations with weakly singular kernel[J]. Journal of Computational and Applied Mathematics, 2022, 404:Paper No. 113902, 17. [23] Tang T, Xu X, Cheng J. On spectral methods for Volterra integral equations and the convergence analysis[J]. Journal of Computational Mathematics, 2008, 26(6):825-837. [24] Chen Y, Tang T. Spectral methods for weakly singular Volterra integral equations with smooth solutions[J]. Journal of Computational and Applied Mathematics, 2009, 233(4):938-950. [25] Wu H, Xu L. Chebyshev-Legendre spectral collocation method for second kind Volterra integral equations[J]. Communication on Applied Mathematics and Computation, 2014, 28(2):175-188. [26] Conte D, Paternoster B. Multistep collocation methods for Volterra integral equations[J]. Applied Numerical Mathematics, 2009, 59(8):1721-1736. [27] Sheng C, Wang Z, Guo B. A multistep Legendre-Gauss spectral collocation method for nonlinear Volterra integral equations[J]. SIAM Journal on Numerical Analysis, 2014, 52(4):1953-1980. [28] Zhang C, Liu Z, Chen S, Tao D. New spectral element method for Volterra integral equations with weakly singular kernel[J]. Journal of Computational and Applied Mathematics, 2022, 404:Paper No. 113902. [29] Ma H. Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws[J]. SIAM Journal on Numerical Analysis, 1998, 35(3):869-892. [30] Li H, Wu H, Ma H. The Legendre Galerkin-Chebyshev collocation method for Burgers-like equations[J]. IMA Journal of Numerical Analysis, 2003, 23(1):109-124. [31] Alpert B K, Rokhlin V. A fast algorithm for the evaluation of Legendre expansions[J]. SIAM Journal on Scientific and Statistical Computing, 1991, 12(1):158-179. [32] Don W S, Gottlieb D. The Chebyshev-Legendre method:implementing Legendre methods on Chebyshev points[J]. SIAM Journal on Numerical Analysis, 1994, 31(6):1519-1534. [33] Wu H, Ma H, Li H. Optimal error estimates of the Chebyshev-Legendre spectral method for solving the generalized Burgers equation[J]. SIAM Journal on Numerical Analysis, 2003, 41(2):659-672. [34] Wu H, Zhu Y, Wang H, Xu L. A domain decomposition Chebyshev spectral collocation method for Volterra integral equations[J]. Journal of Mathematical Study, 2018, 51(1):57-75. [35] Diogo T. Collocation and iterated collocation methods for a class of weakly singular Volterra integral equations[J]. Journal of Computational and Applied Mathematics, 2009, 229(2):363-372. [36] Allaei S S, wen Yang Z, Brunner H. Existence, uniqueness and regularity of solutions to a class of third-kind Volterra integral equations[J]. Journal of Integral Equations and Applications, 2015, 27(3):325-342. [37] Cai H. Legendre-Galerkin methods for third kind VIEs and CVIEs[J]. Journal of Scientific Computing, 2020, 83(1):Paper No. 3, 18. |
[1] | 杨宇博, 马和平. 广义空间分数阶Burgers方程的Legendre Galerkin-Chebyshev配置方法逼近[J]. 数值计算与计算机应用, 2017, 38(3): 236-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||