• 论文 • 上一篇    

Volterra型积分方程的Galerkin Legendre Jacobi数值积分法

范友康1, 卢荣伟2, 覃永辉1,2   

  1. 1. 桂林电子科技大学, 数学与计算科学学院, 广西高校数据分析与计算重点实验室, 广西自动检测技术与仪器重点实验室, 桂林 541004;
    2. 桂林电子科技大学, 广西应用数学中心, 桂林 541004
  • 收稿日期:2021-12-29 发布日期:2023-03-16
  • 通讯作者: 覃永辉,yonghui1676@163.com;yonghui@csrc.ac.cn.
  • 基金资助:
    国家自然科学基金(12161025,61963011,11961012,11961010);广西自动检测技术与仪器重点实验室基金(YQ22106);桂林电子科技大学研究生教育创新计划(2020YCXS086)资助.

范友康, 卢荣伟, 覃永辉. Volterra型积分方程的Galerkin Legendre Jacobi数值积分法[J]. 数值计算与计算机应用, 2023, 44(1): 81-94.

Fan Youkang, Lu Rongwei, Qin Yonghui. GALERKIN LEGENDRE JACOBI NUMERICAL INTEGRAL FOR VOLTERRA INTEGRAL EQUATIONS[J]. Journal on Numerica Methods and Computer Applications, 2023, 44(1): 81-94.

GALERKIN LEGENDRE JACOBI NUMERICAL INTEGRAL FOR VOLTERRA INTEGRAL EQUATIONS

Fan Youkang1, Lu Rongwei2, Qin Yonghui1,2   

  1. 1. School of Mathematics and Computing Science, Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology, Guilin 541004, China;
    2. Center for Applied Mathematics of Guangxi(GUET), Guilin 541004, China
  • Received:2021-12-29 Published:2023-03-16
研究Volterra型积分方程的Galerkin Legendre Jacobi数值积分方法.首先,利用Jacobi Galerkin数值积分对方程中的积分项进行离散,从而我们得到一个等价方程.其次,对该等价模型构造Legendre Galerkin方程,且在积分项部分用Chebyshev插值计算.然后,该方法还被推广到非线性Volterra积分方程的计算.最后,对计算区间较大的模型,基于上述方法,构造了两级多区域格式且将其应用于含有一个间断点的Volterra型积分方程的计算.此外,还将其推广到第三类Volterra积分方程.通过数值算例验证该方法的高阶精度与有效性.
Galerkin Legendre Jacobi numerical integration method is investigated for the Volterratype integral equations. First, the integral term of the equation is approximated by using the Jacobi Galerkin numerical integral method, and an equivalent equation is obtained. Second, the Legendre Galerkin equation is developed for this equivalent model, and the integral term is calculated by Chebyshev interpolation. Then, our method is also extended to solve the nonlinear Volterra integral equations. Finally, by using the above method, we give a two-level multi-interval scheme for the Volterra integral equation with discontinuity. In addition, we also apply our scheme to solve the third class of Volterra integral equations. Some numerical examples are given to test the high-order accuracy and the effectiveness of the proposed method.

MR(2010)主题分类: 

()
[1] Bellen A, Jackiewicz Z, Vermiglio R, Zennaro M. Stability analysis of Runge-Kutta methods for Volterra integral equations of the second kind[J]. IMA Journal of Numerical Analysis, 1990, 10(1):103-118.
[2] Linz P. Analytical and numerical methods for Volterra equations[M]. SIAM Studies in Applied Mathematics, Philadelphia PA. 1985.
[3] Brunner H. Collocation methods for Volterra integral and related functional differential equations[M]. volume 15. Cambridge University Press, 2004.
[4] Christine B. Spectral methods, in Handbook of Numerical Analysis, Part 5[M]. North-Holland, Amsterdam, 1997.
[5] Boyd J P. Chebyshev and Fourier Spectral Methods[M]. Springer-Verlag, Berlin, 1989.
[6] Guo B. Spectral methods and their applications[M]. World Scientific, Singapore, 1998.
[7] Daniele F. Polynomial Approximations of Differential Equations[M]. Springer-Verlag, Berlin, 1992.
[8] Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral methods, fundamental in single domains[M]. Springer, Berlin, 2006.
[9] Shen J, Tang T, Wang L. Spectral methods, Algorithms, Analysis and Applications[M], volume 41. Springer, Heidelberg, 2011.
[10] Babuška I, Janik T. The h-p version of the finite element method for parabolic equations. I. The p-version in time[J]. Numerical Methods for Partial Differential Equations, 1989, 5(4):363-399.
[11] Schötzau D, Schwab C. Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method[J]. SIAM Journal on Numerical Analysis, 2000, 38(3):837-875.
[12] Tal-Ezer H. Spectral methods in time for hyperbolic equations[J]. SIAM Journal on Numerical Analysis, 1986, 23(1):11-26.
[13] Tang J, Ma H. Single and multi-interval Legendre τ-methods in time for parabolic equations[J]. Advances in Computational Mathematics, 2002, 17(4):349-367.
[14] Guo B, Zhong W. Legendre-Gauss collocation methods for ordinary differential equations[J]. Advances in Computational Mathematics, 2009, 30(3):249-280.
[15] Guo B, Wang Z. A spectral collocation method for solving initial value problems of first order ordinary differential equations[J]. Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 2010, 14(3):1029-1054.
[16] Wang Z, Guo B. Legendre-Gauss-Radau collocation method for solving initial value problems of first order ordinary differential equations[J]. Journal of Scientific Computing, 2012, 52(1):226-255.
[17] Elnagar G N, Kazemi M. Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations[J]. Journal of Computational and Applied Mathematics, 1996, 76(1-2):147-158.
[18] Brunner H, Pedas A, Vainikko G. A spline collocation method for linear Volterra integrodifferential equations with weakly singular kernels[G]. volume 41, pages 891-900. 2001. BIT 40th Anniversary Meeting.
[19] Brunner H, Crisci M R, Russo E, Vecchio A. k Continuous and discrete time waveform relaxation methods for Volterra integral equations with weakly singular kernels[J]. Ricerche di Matematica, 2002, 51(2):201-222(2003).
[20] Chen Y, Tang T. Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel[J]. Mathematics of Computation, 2010, 79(269):147-167.
[21] Shen J, Sheng C, Wang Z. Generalized Jacobi spectral-Galerkin method for nonlinear Volterra integral equations with weakly singular kernels[J]. Journal of Mathematical Study. Shuxue Yanjiu, 2015, 48(4):315-329.
[22] Zhang C, Liu Z, Chen S, Tao D. New spectral element method for Volterra integral equations with weakly singular kernel[J]. Journal of Computational and Applied Mathematics, 2022, 404:Paper No. 113902, 17.
[23] Tang T, Xu X, Cheng J. On spectral methods for Volterra integral equations and the convergence analysis[J]. Journal of Computational Mathematics, 2008, 26(6):825-837.
[24] Chen Y, Tang T. Spectral methods for weakly singular Volterra integral equations with smooth solutions[J]. Journal of Computational and Applied Mathematics, 2009, 233(4):938-950.
[25] Wu H, Xu L. Chebyshev-Legendre spectral collocation method for second kind Volterra integral equations[J]. Communication on Applied Mathematics and Computation, 2014, 28(2):175-188.
[26] Conte D, Paternoster B. Multistep collocation methods for Volterra integral equations[J]. Applied Numerical Mathematics, 2009, 59(8):1721-1736.
[27] Sheng C, Wang Z, Guo B. A multistep Legendre-Gauss spectral collocation method for nonlinear Volterra integral equations[J]. SIAM Journal on Numerical Analysis, 2014, 52(4):1953-1980.
[28] Zhang C, Liu Z, Chen S, Tao D. New spectral element method for Volterra integral equations with weakly singular kernel[J]. Journal of Computational and Applied Mathematics, 2022, 404:Paper No. 113902.
[29] Ma H. Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws[J]. SIAM Journal on Numerical Analysis, 1998, 35(3):869-892.
[30] Li H, Wu H, Ma H. The Legendre Galerkin-Chebyshev collocation method for Burgers-like equations[J]. IMA Journal of Numerical Analysis, 2003, 23(1):109-124.
[31] Alpert B K, Rokhlin V. A fast algorithm for the evaluation of Legendre expansions[J]. SIAM Journal on Scientific and Statistical Computing, 1991, 12(1):158-179.
[32] Don W S, Gottlieb D. The Chebyshev-Legendre method:implementing Legendre methods on Chebyshev points[J]. SIAM Journal on Numerical Analysis, 1994, 31(6):1519-1534.
[33] Wu H, Ma H, Li H. Optimal error estimates of the Chebyshev-Legendre spectral method for solving the generalized Burgers equation[J]. SIAM Journal on Numerical Analysis, 2003, 41(2):659-672.
[34] Wu H, Zhu Y, Wang H, Xu L. A domain decomposition Chebyshev spectral collocation method for Volterra integral equations[J]. Journal of Mathematical Study, 2018, 51(1):57-75.
[35] Diogo T. Collocation and iterated collocation methods for a class of weakly singular Volterra integral equations[J]. Journal of Computational and Applied Mathematics, 2009, 229(2):363-372.
[36] Allaei S S, wen Yang Z, Brunner H. Existence, uniqueness and regularity of solutions to a class of third-kind Volterra integral equations[J]. Journal of Integral Equations and Applications, 2015, 27(3):325-342.
[37] Cai H. Legendre-Galerkin methods for third kind VIEs and CVIEs[J]. Journal of Scientific Computing, 2020, 83(1):Paper No. 3, 18.
[1] 杨宇博, 马和平. 广义空间分数阶Burgers方程的Legendre Galerkin-Chebyshev配置方法逼近[J]. 数值计算与计算机应用, 2017, 38(3): 236-244.
阅读次数
全文


摘要