中国科学院数学与系统科学研究院期刊网

15 January 2024, Volume 42 Issue 1
    

  • Select all
    |
  • Haijin Wang, Anping Xu, Qi Tao
    Journal of Computational Mathematics. 2024, 42(1): 1-23. https://doi.org/10.4208/jcm.2202-m2021-0290
    Abstract ( ) Download PDF   Knowledge map   Save
    In this paper, we first present the optimal error estimates of the semi-discrete ultra-weak discontinuous Galerkin method for solving one-dimensional linear convection-diffusion equations. Then, coupling with a kind of Runge-Kutta type implicit-explicit time discretization which treats the convection term explicitly and the diffusion term implicitly, we analyze the stability and error estimates of the corresponding fully discrete schemes. The fully discrete schemes are proved to be stable if the time-step ττ0, where τ0 is a constant independent of the mesh-size h. Furthermore, by the aid of a special projection and a careful estimate for the convection term, the optimal error estimate is also obtained for the third order fully discrete scheme. Numerical experiments are displayed to verify the theoretical results.
  • Jauny Prajapati, Debdas Ghosh, Ashutosh Upadhayay
    Journal of Computational Mathematics. 2024, 42(1): 24-48. https://doi.org/10.4208/jcm.2204-m2021-0241
    Abstract ( ) Download PDF   Knowledge map   Save
    This paper proposes an interior-point technique for detecting the nondominated points of multi-objective optimization problems using the direction-based cone method. Cone method decomposes the multi-objective optimization problems into a set of single-objective optimization problems. For this set of problems, parametric perturbed KKT conditions are derived. Subsequently, an interior point technique is developed to solve the parametric perturbed KKT conditions. A differentiable merit function is also proposed whose stationary point satisfies the KKT conditions. Under some mild assumptions, the proposed algorithm is shown to be globally convergent. Numerical results of unconstrained and constrained multi-objective optimization test problems are presented. Also, three performance metrics (modified generational distance, hypervolume, inverted generational distance) are used on some test problems to investigate the efficiency of the proposed algorithm. We also compare the results of the proposed algorithm with the results of some other existing popular methods.
  • Xiaojing Dong, Yinnian He
    Journal of Computational Mathematics. 2024, 42(1): 49-70. https://doi.org/10.4208/jcm.2201-m2021-0140
    Abstract ( ) Download PDF   Knowledge map   Save
    By combination of iteration methods with the partition of unity method (PUM), some finite element parallel algorithms for the stationary incompressible magnetohydrodynamics (MHD) with different physical parameters are presented and analyzed. These algorithms are highly efficient. At first, a global solution is obtained on a coarse grid for all approaches by one of the iteration methods. By parallelized residual schemes, local corrected solutions are calculated on finer meshes with overlapping sub-domains. The subdomains can be achieved flexibly by a class of PUM. The proposed algorithm is proved to be uniformly stable and convergent. Finally, one numerical example is presented to confirm the theoretical findings.
  • Shipeng Mao, Jiaao Sun, Wendong Xue
    Journal of Computational Mathematics. 2024, 42(1): 71-110. https://doi.org/10.4208/jcm.2201-m2021-0315
    Abstract ( ) Download PDF   Knowledge map   Save
    In this paper, we consider the initial-boundary value problem (IBVP) for the micropolar Naviers-Stokes equations (MNSE) and analyze a first order fully discrete mixed finite element scheme. We first establish some regularity results for the solution of MNSE, which seem to be not available in the literature. Next, we study a semi-implicit time-discrete scheme for the MNSE and prove L2-H1 error estimates for the time discrete solution. Furthermore, certain regularity results for the time discrete solution are establishes rigorously. Based on these regularity results, we prove the unconditional L2-H1 error estimates for the finite element solution of MNSE. Finally, some numerical examples are carried out to demonstrate both accuracy and efficiency of the fully discrete finite element scheme.
  • Ruihan Guo, Yan Xu
    Journal of Computational Mathematics. 2024, 42(1): 111-133. https://doi.org/10.4208/jcm.2202-m2021-0302
    Abstract ( ) Download PDF   Knowledge map   Save
    In [20], a semi-implicit spectral deferred correction (SDC) method was proposed, which is efficient for highly nonlinear partial differential equations (PDEs). The semi-implicit SDC method in [20] is based on first-order time integration methods, which are corrected iteratively, with the order of accuracy increased by one for each additional iteration. In this paper, we will develop a class of semi-implicit SDC methods, which are based on second-order time integration methods and the order of accuracy are increased by two for each additional iteration. For spatial discretization, we employ the local discontinuous Galerkin (LDG) method to arrive at fully-discrete schemes, which are high-order accurate in both space and time. Numerical experiments are presented to demonstrate the accuracy, efficiency and robustness of the proposed semi-implicit SDC methods for solving complex nonlinear PDEs.
  • Xiaoya Zhai
    Journal of Computational Mathematics. 2024, 42(1): 134-155. https://doi.org/10.4208/jcm.2209-m2021-0358
    Abstract ( ) Download PDF   Knowledge map   Save
    Topology optimization (TO) has developed rapidly recently. However, topology optimization with stress constraints still faces many challenges due to its highly non-linear properties which will cause inefficient computation, iterative oscillation, and convergence guarantee problems. At the same time, isogeometric analysis (IGA) is accepted by more and more researchers, and it has become one important tool in the field of topology optimization because of its high fidelity. In this paper, we focus on topology optimization with stress constraints based on isogeometric analysis to improve computation efficiency and stability. A new hybrid solver combining the alternating direction method of multipliers and the method of moving asymptotes (ADMM-MMA) is proposed to solve this problem. We first generate an initial feasible point by alternating direction method of multipliers (ADMM) in virtue of the rapid initial descent property. After that, we adopt the method of moving asymptotes (MMA) to get the final results. Several benchmark examples are used to verify the proposed method, and the results show its feasibility and effectiveness.
  • Jingjun Zhao, Wenjiao Zhao, Yang Xu
    Journal of Computational Mathematics. 2024, 42(1): 156-177. https://doi.org/10.4208/jcm.2203-m2021-0233
    Abstract ( ) Download PDF   Knowledge map   Save
    This paper deals with the numerical approximation for the time fractional diffusion problem with fractional dynamic boundary conditions. The well-posedness for the weak solutions is studied. A direct discontinuous Galerkin approach is used in spatial direction under the uniform meshes, together with a second-order Alikhanov scheme is utilized in temporal direction on the graded mesh, and then the fully discrete scheme is constructed. Furthermore, the stability and the error estimate for the full scheme are analyzed in detail. Numerical experiments are also given to illustrate the effectiveness of the proposed method.
  • Shounian Deng, Chen Fei, Weiyin Fei, Xuerong Mao
    Journal of Computational Mathematics. 2024, 42(1): 178-216. https://doi.org/10.4208/jcm.2204-m2021-0270
    Abstract ( ) Download PDF   Knowledge map   Save
    This work is concerned with the convergence and stability of the truncated EulerMaruyama (EM) method for super-linear stochastic differential delay equations (SDDEs) with time-variable delay and Poisson jumps. By constructing appropriate truncated functions to control the super-linear growth of the original coefficients, we present two types of the truncated EM method for such jump-diffusion SDDEs with time-variable delay, which is proposed to be approximated by the value taken at the nearest grid points on the left of the delayed argument. The first type is proved to have a strong convergence order which is arbitrarily close to 1/2 in mean-square sense, under the Khasminskii-type, global monotonicity with U function and polynomial growth conditions. The second type is convergent in q-th (q < 2) moment under the local Lipschitz plus generalized Khasminskii-type conditions. In addition, we show that the partially truncated EM method preserves the mean-square and H stabilities of the true solutions. Lastly, we carry out some numerical experiments to support the theoretical results.
  • Lina Wang, Qian Tong, Lijun Yi, Mingzhu Zhang
    Journal of Computational Mathematics. 2024, 42(1): 217-247. https://doi.org/10.4208/jcm.2203-m2021-0244
    Abstract ( ) Download PDF   Knowledge map   Save
    We propose and analyze a single-interval Legendre-Gauss-Radau (LGR) spectral collocation method for nonlinear second-order initial value problems of ordinary differential equations. We design an efficient iterative algorithm and prove spectral convergence for the single-interval LGR collocation method. For more effective implementation, we propose a multi-interval LGR spectral collocation scheme, which provides us great flexibility with respect to the local time steps and local approximation degrees. Moreover, we combine the multi-interval LGR collocation method in time with the Legendre-Gauss-Lobatto collocation method in space to obtain a space-time spectral collocation approximation for nonlinear second-order evolution equations. Numerical results show that the proposed methods have high accuracy and excellent long-time stability. Numerical comparison between our methods and several commonly used methods are also provided.
  • Xu Yang, Weidong Zhao
    Journal of Computational Mathematics. 2024, 42(1): 248-270. https://doi.org/10.4208/jcm.2206-m2021-0354
    Abstract ( ) Download PDF   Knowledge map   Save
    In this paper, we study the strong convergence of a jump-adapted implicit Milstein method for a class of jump-diffusion stochastic differential equations with non-globally Lipschitz drift coefficients. Compared with the regular methods, the jump-adapted methods can significantly reduce the complexity of higher order methods, which makes them easily implementable for scenario simulation. However, due to the fact that jump-adapted time discretization is path dependent and the stepsize is not uniform, this makes the numerical analysis of jump-adapted methods much more involved, especially in the non-globally Lipschitz setting. We provide a rigorous strong convergence analysis of the considered jump-adapted implicit Milstein method by developing some novel analysis techniques and optimal rate with order one is also successfully recovered. Numerical experiments are carried out to verify the theoretical findings.
  • Ningning Li, Wengu Chen, Huanmin Ge
    Journal of Computational Mathematics. 2024, 42(1): 271-288. https://doi.org/10.4208/jcm.2204-m2021-0333
    Abstract ( ) Download PDF   Knowledge map   Save
    This paper considers a corrupted compressed sensing problem and is devoted to recover signals that are approximately sparse in some general dictionary but corrupted by a combination of interference having a sparse representation in a second general dictionary and measurement noise. We provide new restricted isometry property (RIP) analysis to achieve stable recovery of sparsely corrupted signals through Justice Pursuit De-Noising (JPDN) with an additional parameter. Our main tool is to adapt a crucial sparse decomposition technique to the analysis of the Justice Pursuit method. The proposed RIP condition improves the existing representative results. Numerical simulations are provided to verify the reliability of the JPDN model.
  • Gengen Zhang, Chunmei Su
    Journal of Computational Mathematics. 2024, 42(1): 289-312. https://doi.org/10.4208/jcm.2204-m2022-0001
    Abstract ( ) Download PDF   Knowledge map   Save
    In this paper, we consider a uniformly accurate compact finite difference method to solve the quantum Zakharov system (QZS) with a dimensionless parameter 0 < ε ≤ 1, which is inversely proportional to the acoustic speed. In the subsonic limit regime, i.e., when 0 < ε ? 1, the solution of QZS propagates rapidly oscillatory initial layers in time, and this brings significant difficulties in devising numerical algorithm and establishing their error estimates, especially as 0 < ε ? 1. The solvability, the mass and energy conservation laws of the scheme are also discussed. Based on the cut-off technique and energy method, we rigorously analyze two independent error estimates for the well-prepared and ill-prepared initial data, respectively, which are uniform in both time and space for ε ∈ (0, 1] and optimal at the fourth order in space. Numerical results are reported to verify the error behavior.