中国科学院数学与系统科学研究院期刊网

15 November 2024, Volume 42 Issue 6
    

  • Select all
    |
  • Duo Qiu, Michael K. Ng, Xiongjun Zhang
    Journal of Computational Mathematics. 2024, 42(6): 1427-1451. https://doi.org/10.4208/jcm.2309-m2023-0041
    Abstract ( ) Download PDF   Knowledge map   Save
    In this paper, we study the low-rank matrix completion problem with Poisson observations, where only partial entries are available and the observations are in the presence of Poisson noise. We propose a novel model composed of the Kullback-Leibler (KL) divergence by using the maximum likelihood estimation of Poisson noise, and total variation (TV) and nuclear norm constraints. Here the nuclear norm and TV constraints are utilized to explore the approximate low-rankness and piecewise smoothness of the underlying matrix, respectively. The advantage of these two constraints in the proposed model is that the low-rankness and piecewise smoothness of the underlying matrix can be exploited simultaneously, and they can be regularized for many real-world image data. An upper error bound of the estimator of the proposed model is established with high probability, which is not larger than that of only TV or nuclear norm constraint. To the best of our knowledge, this is the first work to utilize both low-rank and TV constraints with theoretical error bounds for matrix completion under Poisson observations. Extensive numerical examples on both synthetic data and real-world images are reported to corroborate the superiority of the proposed approach.
  • Mingcai Ding, Xiaoliang Song, Bo Yu
    Journal of Computational Mathematics. 2024, 42(6): 1452-1501. https://doi.org/10.4208/jcm.2207-m2021-0349
    Abstract ( ) Download PDF   Knowledge map   Save
    Optimization problem of cardinality constrained mean-variance (CCMV) model for sparse portfolio selection is considered. To overcome the difficulties caused by cardinality constraint, an exact penalty approach is employed, then CCMV problem is transferred into a difference-of-convex-functions (DC) problem. By exploiting the DC structure of the gained problem and the superlinear convergence of semismooth Newton (ssN) method, an inexact proximal DC algorithm with sieving strategy based on a majorized ssN method (siPDCA-mssN) is proposed. For solving the inner problems of siPDCA-mssN from dual, the second-order information is wisely incorporated and an efficient mssN method is employed. The global convergence of the sequence generated by siPDCA-mssN is proved. To solve large-scale CCMV problem, a decomposed siPDCA-mssN (DsiPDCA-mssN) is introduced. To demonstrate the efficiency of proposed algorithms, siPDCA-mssN and DsiPDCA-mssN are compared with the penalty proximal alternating linearized minimization method and the CPLEX(12.9) solver by performing numerical experiments on realword market data and large-scale simulated data. The numerical results demonstrate that siPDCA-mssN and DsiPDCA-mssN outperform the other methods from computation time and optimal value. The out-of-sample experiments results display that the solutions of CCMV model are better than those of other portfolio selection models in terms of Sharp ratio and sparsity.
  • Daxin Nie, Weihua Deng
    Journal of Computational Mathematics. 2024, 42(6): 1502-1525. https://doi.org/10.4208/jcm.2305-m2023-0014
    Abstract ( ) Download PDF   Knowledge map   Save
    In this paper, we consider the strong convergence of the time-space fractional diffusion equation driven by fractional Gaussian noise with Hurst index H ∈ (1/2, 1). A sharp regularity estimate of the mild solution and the numerical scheme constructed by finite element method for integral fractional Laplacian and backward Euler convolution quadrature for Riemann-Liouville time fractional derivative are proposed. With the help of inverse Laplace transform and fractional Ritz projection, we obtain the accurate error estimates in time and space. Finally, our theoretical results are accompanied by numerical experiments.
  • Jie Xu, Mingbo Zhang
    Journal of Computational Mathematics. 2024, 42(6): 1526-1553. https://doi.org/10.4208/jcm.2305-m2022-0268
    Abstract ( ) Download PDF   Knowledge map   Save
    In this paper, we shall prove a Wong-Zakai approximation for stochastic Volterra equations under appropriate assumptions. We may apply it to a class of stochastic differential equations with the kernel of fractional Brownian motion with Hurst parameter H ∈ (1/2, 1) and subfractional Brownian motion with Hurst parameter H ∈ (1/2, 1). As far as we know, this is the first result on stochastic Volterra equations in this topic.
  • Ines Adouani, Chafik Samir
    Journal of Computational Mathematics. 2024, 42(6): 1554-1578. https://doi.org/10.4208/jcm.2303-m2022-0201
    Abstract ( ) Download PDF   Knowledge map   Save
    We propose a new method for smoothly interpolating a given set of data points on Grassmann and Stiefel manifolds using a generalization of the De Casteljau algorithm. To that end, we reduce interpolation problem to the classical Euclidean setting, allowing us to directly leverage the extensive toolbox of spline interpolation. The interpolated curve enjoy a number of nice properties: The solution exists and is optimal in many common situations. For applications, the structures with respect to chosen Riemannian metrics are detailed resulting in additional computational advantages.
  • Pratibha Shakya
    Journal of Computational Mathematics. 2024, 42(6): 1579-1604. https://doi.org/10.4208/jcm.2305-m2022-0215
    Abstract ( ) Download PDF   Knowledge map   Save
    This paper considers the finite element approximation to parabolic optimal control problems with measure data in a nonconvex polygonal domain. Such problems usually possess low regularity in the state variable due to the presence of measure data and the nonconvex nature of the domain. The low regularity of the solution allows the finite element approximations to converge at lower orders. We prove the existence, uniqueness and regularity results for the solution to the control problem satisfying the first order optimality condition. For our error analysis we have used piecewise linear elements for the approximation of the state and co-state variables, whereas piecewise constant functions are employed to approximate the control variable. The temporal discretization is based on the implicit Euler scheme. We derive both a priori and a posteriori error bounds for the state, control and co-state variables. Numerical experiments are performed to validate the theoretical rates of convergence.
  • Jianchao Bai, Ke Guo, Junli Liang, Yang Jing, H. C. So
    Journal of Computational Mathematics. 2024, 42(6): 1605-1626. https://doi.org/10.4208/jcm.2305-m2021-0107
    Abstract ( ) Download PDF   Knowledge map   Save
    The alternating direction method of multipliers (ADMM) has been extensively investigated in the past decades for solving separable convex optimization problems, and surprisingly, it also performs efficiently for nonconvex programs. In this paper, we propose a symmetric ADMM based on acceleration techniques for a family of potentially nonsmooth and nonconvex programming problems with equality constraints, where the dual variables are updated twice with different stepsizes. Under proper assumptions instead of the socalled Kurdyka-Lojasiewicz inequality, convergence of the proposed algorithm as well as its pointwise iteration-complexity are analyzed in terms of the corresponding augmented Lagrangian function and the primal-dual residuals, respectively. Performance of our algorithm is verified by numerical examples corresponding to signal processing applications in sparse nonconvex/convex regularized minimization.
  • Minqiang Xu, Yanting Yuan, Waixiang Cao, Qingsong Zou
    Journal of Computational Mathematics. 2024, 42(6): 1627-1655. https://doi.org/10.4208/jcm.2305-m2021-0330
    Abstract ( ) Download PDF   Knowledge map   Save
    In this paper, we analyze two classes of spectral volume (SV) methods for one-dimensional hyperbolic equations with degenerate variable coefficients. Two classes of SV methods are constructed by letting a piecewise k-th order (k ≥ 1 is an integer) polynomial to satisfy the conservation law in each control volume, which is obtained by refining spectral volumes (SV) of the underlying mesh with k Gauss-Legendre points (LSV) or Radaus points (RSV) in each SV. The L2-norm stability and optimal order convergence properties for both methods are rigorously proved for general non-uniform meshes. Surprisingly, we discover some very interesting superconvergence phenomena: At some special points, the SV flux function approximates the exact flux with (k+2)-th order and the SV solution itself approximates the exact solution with (k + 3/2)-th order, some superconvergence behaviors for element averages errors have been also discovered. Moreover, these superconvergence phenomena are rigorously proved by using the so-called correction function method. Our theoretical findings are verified by several numerical experiments.
  • Hongzheng Ruan, Weihong Yang
    Journal of Computational Mathematics. 2024, 42(6): 1656-1687. https://doi.org/10.4208/jcm.2306-m2022-0279
    Abstract ( ) Download PDF   Knowledge map   Save
    Classical quasi-Newton methods are widely used to solve nonlinear problems in which the first-order information is exact. In some practical problems, we can only obtain approximate values of the objective function and its gradient. It is necessary to design optimization algorithms that can utilize inexact first-order information. In this paper, we propose an adaptive regularized quasi-Newton method to solve such problems. Under some mild conditions, we prove the global convergence and establish the convergence rate of the adaptive regularized quasi-Newton method. Detailed implementations of our method, including the subspace technique to reduce the amount of computation, are presented. Encouraging numerical results demonstrate that the adaptive regularized quasi-Newton method is a promising method, which can utilize the inexact first-order information effectively.
  • Wei Zhang
    Journal of Computational Mathematics. 2024, 42(6): 1688-1713. https://doi.org/10.4208/jcm.2307-m2022-0194
    Abstract ( ) Download PDF   Knowledge map   Save
    In this paper, we investigate the theoretical and numerical analysis of the stochastic Volterra integro-differential equations (SVIDEs) driven by Lévy noise. The existence, uniqueness, boundedness and mean square exponential stability of the analytic solutions for SVIDEs driven by Lévy noise are considered. The split-step theta method of SVIDEs driven by Lévy noise is proposed. The boundedness of the numerical solution and strong convergence are proved. Moreover, its mean square exponential stability is obtained. Some numerical examples are given to support the theoretical results.
  • Yifan Wang, Hehu Xie, Pengzhan Jin
    Journal of Computational Mathematics. 2024, 42(6): 1714-1742. https://doi.org/10.4208/jcm.2307-m2022-0233
    Abstract ( ) Download PDF   Knowledge map   Save
    In this paper, we introduce a type of tensor neural network. For the first time, we propose its numerical integration scheme and prove the computational complexity to be the polynomial scale of the dimension. Based on the tensor product structure, we develop an efficient numerical integration method by using fixed quadrature points for the functions of the tensor neural network. The corresponding machine learning method is also introduced for solving high-dimensional problems. Some numerical examples are also provided to validate the theoretical results and the numerical algorithm.
  • Yang Xu, Zhenguo Zhou, Jingjun Zhao
    Journal of Computational Mathematics. 2024, 42(6): 1743-1776. https://doi.org/10.4208/jcm.2307-m2023-0012
    Abstract ( ) Download PDF   Knowledge map   Save
    The second-order serendipity virtual element method is studied for the semilinear pseudo-parabolic equations on curved domains in this paper. Nonhomogeneous Dirichlet boundary conditions are taken into account, the existence and uniqueness are investigated for the weak solution of the nonhomogeneous initial-boundary value problem. The Nitschebased projection method is adopted to impose the boundary conditions in a weak way. The interpolation operator is used to deal with the nonlinear term. The Crank-Nicolson scheme is employed to discretize the temporal variable. There are two main features of the proposed scheme: (i) the internal degrees of freedom are avoided no matter what type of mesh is utilized, and (ii) the Jacobian is simple to calculate when Newton’s iteration method is applied to solve the fully discrete scheme. The error estimates are established for the discrete schemes and the theoretical results are illustrated through some numerical examples.