中国科学院数学与系统科学研究院期刊网

Most accessed

  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All

Please wait a minute...
  • Select all
    |
  • Zewen Wang, Shufang Qiu, Shuang Yu, Bin Wu, Wen Zhang
    Journal of Computational Mathematics. 2023, 41(2): 173-190. https://doi.org/10.4208/jcm.2107-m2020-0133
    CSCD(1)
    In this paper, we mainly study an inverse source problem of time fractional diffusion equation in a bounded domain with an over-specified terminal condition at a fixed time. A novel regularization method, which we call the exponential Tikhonov regularization method with a parameter γ, is proposed to solve the inverse source problem, and the corresponding convergence analysis is given under a-priori and a-posteriori regularization parameter choice rules. When γ is less than or equal to zero, the optimal convergence rate can be achieved and it is independent of the value of γ. However, when γ is great than zero, the optimal convergence rate depends on the value of γ which is related to the regularity of the unknown source. Finally, numerical experiments are conducted for showing the effectiveness of the proposed exponential regularization method.
  • Haishen Dai, Qiumei Huang, Cheng Wang
    Journal of Computational Mathematics. 2023, 41(3): 370-394. https://doi.org/10.4208/jcm.2107-m2021-0051
    CSCD(1)
    In this paper, ETD3-Padé and ETD4-Padé Galerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions. An ETD-based RK is used for time integration of the corresponding equation. To overcome a well-known difficulty of numerical instability associated with the computation of the exponential operator, the Padé approach is used for such an exponential operator approximation, which in turn leads to the corresponding ETD-Padé schemes. An unconditional L2 numerical stability is proved for the proposed numerical schemes, under a global Lipshitz continuity assumption. In addition, optimal rate error estimates are provided, which gives the convergence order of O(k3 + hr) (ETD3- Padé) or O(k4 + hr) (ETD4-Padé) in the L2 norm, respectively. Numerical experiments are presented to demonstrate the robustness of the proposed numerical schemes.
  • Huifang Zhou, Zhiqiang Sheng, Guangwei Yuan
    Journal of Computational Mathematics. 2023, 41(3): 345-369. https://doi.org/10.4208/jcm.2107-m2020-0266
    CSCD(1)
    In this paper, we present a unified finite volume method preserving discrete maximum principle (DMP) for the conjugate heat transfer problems with general interface conditions. We prove the existence of the numerical solution and the DMP-preserving property. Numerical experiments show that the nonlinear iteration numbers of the scheme in [24] increase rapidly when the interfacial coefficients decrease to zero. In contrast, the nonlinear iteration numbers of the unified scheme do not increase when the interfacial coefficients decrease to zero, which reveals that the unified scheme is more robust than the scheme in [24]. The accuracy and DMP-preserving property of the scheme are also verified in the numerical experiments.
  • Yuan Li, Xuewei Cui
    Journal of Computational Mathematics. 2023, 41(2): 211-223. https://doi.org/10.4208/jcm.2107-m2020-0243
    CSCD(1)
    This paper aims to study a second-order semi-implicit BDF finite element scheme for the Kuramoto-Tsuzuki equations in two dimensional and three dimensional spaces. The proposed scheme is stable and the nonlinear term is linearized by the extrapolation technique. Moreover, we prove that the error estimate in L2-norm is unconditionally optimal which means that there has not any restriction on the time step and the mesh size. Finally, numerical results are displayed to illustrate our theoretical analysis
  • Haifeng Li, Jing Zhang, Jinming Wen, Dongfang Li
    Journal of Computational Mathematics. 2023, 41(1): 1-17. https://doi.org/10.4208/jcm.2104-m2020-0093
    CSCD(1)
    In countless applications, we need to reconstruct a K-sparse signal x ∈ Rn from noisy measurements y=Φx+v, where Φ∈ Rm×n is a sensing matrix and v ∈ Rm is a noise vector. Orthogonal least squares (OLS), which selects at each step the column that results in the most significant decrease in the residual power, is one of the most popular sparse recovery algorithms. In this paper, we investigate the number of iterations required for recovering x with the OLS algorithm. We show that OLS provides a stable reconstruction of all K-sparse signals x in [2.8K] iterations provided that Φ satisfies the restricted isometry property (RIP). Our result provides a better recovery bound and fewer number of required iterations than those proposed by Foucart in 2013.
  • Xianmin Xu
    Journal of Computational Mathematics. 2023, 41(2): 191-210. https://doi.org/10.4208/jcm.2107-m2020-0227
    CSCD(1)
    By using the Onsager principle as an approximation tool, we give a novel derivation for the moving finite element method for gradient flow equations. We show that the discretized problem has the same energy dissipation structure as the continuous one. This enables us to do numerical analysis for the stationary solution of a nonlinear reaction diffusion equation using the approximation theory of free-knot piecewise polynomials. We show that under certain conditions the solution obtained by the moving finite element method converges to a local minimizer of the total energy when time goes to infinity. The global minimizer, once it is detected by the discrete scheme, approximates the continuous stationary solution in optimal order. Numerical examples for a linear diffusion equation and a nonlinear Allen-Cahn equation are given to verify the analytical results.
  • Yuhuan Yuan, Huazhong Tang
    Journal of Computational Mathematics. 2023, 41(2): 305-324. https://doi.org/10.4208/jcm.2201-m2020-0288
    CSCD(1)
    This paper continues to study the explicit two-stage fourth-order accurate time discretizations [5, 7]. By introducing variable weights, we propose a class of more general explicit one-step two-stage time discretizations, which are different from the existing methods, e.g. the Euler methods, Runge-Kutta methods, and multistage multiderivative methods etc. We study the absolute stability, the stability interval, and the intersection between the imaginary axis and the absolute stability region. Our results show that our two-stage time discretizations can be fourth-order accurate conditionally, the absolute stability region of the proposed methods with some special choices of the variable weights can be larger than that of the classical explicit fourth-or fifth-order Runge-Kutta method, and the interval of absolute stability can be almost twice as much as the latter. Several numerical experiments are carried out to demonstrate the performance and accuracy as well as the stability of our proposed methods.
  • Xiaolin Li
    Journal of Computational Mathematics. 2023, 41(3): 502-524. https://doi.org/10.4208/jcm.2201-m2021-0361
    CSCD(1)
    Numerical integration poses greater challenges in Galerkin meshless methods than finite element methods owing to the non-polynomial feature of meshless shape functions. The reproducing kernel gradient smoothing integration (RKGSI) is one of the optimal numerical integration techniques in Galerkin meshless methods with minimum integration points. In this paper, properties, quadrature rules and the effect of the RKGSI on meshless methods are analyzed. The existence, uniqueness and error estimates of the solution of Galerkin meshless methods under numerical integration with the RKGSI are established. A procedure on how to choose quadrature rules to recover the optimal convergence rate is presented.
  • Yonghui Bo, Wenjun Cai, Yushun Wang
    Journal of Computational Mathematics. 2023, 41(3): 395-414. https://doi.org/10.4208/jcm.2108-m2021-0076
    CSCD(1)
    In this paper, we systematically construct two classes of structure-preserving schemes with arbitrary order of accuracy for canonical Hamiltonian systems. The one class is the symplectic scheme, which contains two new families of parameterized symplectic schemes that are derived by basing on the generating function method and the symmetric composition method, respectively. Each member in these schemes is symplectic for any fixed parameter. A more general form of generating functions is introduced, which generalizes the three classical generating functions that are widely used to construct symplectic algorithms. The other class is a novel family of energy and quadratic invariants preserving schemes, which is devised by adjusting the parameter in parameterized symplectic schemes to guarantee energy conservation at each time step. The existence of the solutions of these schemes is verified. Numerical experiments demonstrate the theoretical analysis and conservation of the proposed schemes.
  • Lexing Ying
    Journal of Computational Mathematics. 2023, 41(3): 542-550. https://doi.org/10.4208/jcm.2211-m2022-0172
    CSCD(1)
    This note introduces a method for sampling Ising models with mixed boundary conditions. As an application of annealed importance sampling and the Swendsen-Wang algorithm, the method adopts a sequence of intermediate distributions that keeps the temperature fixed but turns on the boundary condition gradually. The numerical results show that the variance of the sample weights is relatively small.
  • Datong Zhou, Jing Chen, Hao Wu, Dinghui Yang, Lingyun Qiu
    Journal of Computational Mathematics. 2023, 41(3): 437-458. https://doi.org/10.4208/jcm.2109-m2021-0045
    CSCD(1)
    In this paper, we apply the Wasserstein-Fisher-Rao (WFR) metric from the unbalanced optimal transport theory to the earthquake location problem. Compared with the quadratic Wasserstein (W2) metric from the classical optimal transport theory, the advantage of this method is that it retains the important amplitude information as a new constraint, which avoids the problem of the degeneration of the optimization objective function near the real earthquake hypocenter and origin time. As a result, the deviation of the global minimum of the optimization objective function based on the WFR metric from the true solution can be much smaller than the results based on the W2 metric when there exists strong data noise. Thus, we develop an accurate earthquake location method under strong data noise. Many numerical experiments verify our conclusions.
  • Renzhong Feng, Aitong Huang, Ming-Jun Lai, Zhaiming Shen
    Journal of Computational Mathematics. 2023, 41(1): 18-38. https://doi.org/10.4208/jcm.2104-m2020-0250
    CSCD(1)
    In this paper, we propose a Quasi-Orthogonal Matching Pursuit (QOMP) algorithm for constructing a sparse approximation of functions in terms of expansion by orthonormal polynomials. For the two kinds of sampled data, data with noises and without noises, we apply the mutual coherence of measurement matrix to establish the convergence of the QOMP algorithm which can reconstruct s-sparse Legendre polynomials, Chebyshev polynomials and trigonometric polynomials in s step iterations. The results are also extended to general bounded orthogonal system including tensor product of these three univariate orthogonal polynomials. Finally, numerical experiments will be presented to verify the e ectiveness of the QOMP method.
  • Yongxia Hao, Ting Li
    Journal of Computational Mathematics. 2023, 41(4): 551-568. https://doi.org/10.4208/jcm.2106-m2021-0050
    In this paper, we present a method for generating Bézier surfaces from the boundary information based on a general second order functional and a third order functional associated with the triharmonic equation. By solving simple linear equations, the internal control points of the resulting Bézier surface can be obtained as linear combinations of the given boundary control points. This is a generalization of previous works on Plateau-Bézier problem, harmonic, biharmonic and quasi-harmonic Bézier surfaces. Some representative examples show the effectiveness of the presented method.
  • Yayun Fu, Wenjun Cai, Yushun Wang
    Journal of Computational Mathematics. 2023, 41(5): 797-816. https://doi.org/10.4208/jcm.2111-m2020-0177
    The main objective of this paper is to present an efficient structure-preserving scheme, which is based on the idea of the scalar auxiliary variable approach, for solving the twodimensional space-fractional nonlinear Schrödinger equation. First, we reformulate the equation as an canonical Hamiltonian system, and obtain a new equivalent system via introducing a scalar variable. Then, we construct a semi-discrete energy-preserving scheme by using the Fourier pseudo-spectral method to discretize the equivalent system in space direction. After that, applying the Crank-Nicolson method on the temporal direction gives a linearly-implicit scheme in the fully-discrete version. As expected, the proposed scheme can preserve the energy exactly and more efficient in the sense that only decoupled equations with constant coefficients need to be solved at each time step. Finally, numerical experiments are provided to demonstrate the efficiency and conservation of the scheme.
  • Qiang Han, Shaolin Ji
    Journal of Computational Mathematics. 2023, 41(2): 287-304. https://doi.org/10.4208/jcm.2112-m2019-0289
    CSCD(1)
    In this paper, a stochastic linear two-step scheme has been presented to approximate backward stochastic differential equations (BSDEs). A necessary and sufficient condition is given to judge the $\mathbb{L}$ 2-stability of our numerical schemes. This stochastic linear two-step method possesses a family of 3-order convergence schemes in the sense of strong stability. The coefficients in the numerical methods are inferred based on the constraints of strong stability and n-order accuracy (n∈$\mathbb{N}$ +). Numerical experiments illustrate that the scheme is an efficient probabilistic numerical method.
  • Zhiyun Yu, Dongyang Shi, Huiqing Zhu
    Journal of Computational Mathematics. 2023, 41(4): 569-587. https://doi.org/10.4208/jcm.2107-m2021-0114
    A low order nonconforming mixed finite element method (FEM) is established for the fully coupled non-stationary incompressible magnetohydrodynamics (MHD) problem in a bounded domain in 3D. The lowest order finite elements on tetrahedra or hexahedra are chosen to approximate the pressure, the velocity field and the magnetic field, in which the hydrodynamic unknowns are approximated by inf-sup stable finite element pairs and the magnetic field by H1(?)-conforming finite elements, respectively. The existence and uniqueness of the approximate solutions are shown. Optimal order error estimates of L2(H1)-norm for the velocity field, L2(L2)-norm for the pressure and the broken L2(H1)-norm for the magnetic field are derived.
  • Ruo Li, Fanyi Yang
    Journal of Computational Mathematics. 2023, 41(1): 39-71. https://doi.org/10.4208/jcm.2104-m2020-0231
    CSCD(1)
    We propose a new least squares nite element method to solve the Stokes problem with two sequential steps. The approximation spaces are constructed by the patch reconstruction with one unknown per element. For the rst step, we reconstruct an approximation space consisting of piecewise curl-free polynomials with zero trace. By this space, we minimize a least squares functional to obtain the numerical approximations to the gradient of the velocity and the pressure. In the second step, we minimize another least squares functional to give the solution to the velocity in the reconstructed piecewise divergence-free space. We derive error estimates for all unknowns under both L2 norms and energy norms. Numerical results in two dimensions and three dimensions verify the convergence rates and demonstrate the great exibility of our method.
  • Yanfang Zhang
    Journal of Computational Mathematics. 2023, 41(3): 415-436. https://doi.org/10.4208/jcm.2109-m2020-0099
    CSCD(1)
    In this paper, we consider the generalized Nash equilibrium with shared constraints in the stochastic environment, and we call it the stochastic generalized Nash equilibrium. The stochastic variational inequalities are employed to solve this kind of problems, and the expected residual minimization model and the conditional value-at-risk formulations defined by the residual function for the stochastic variational inequalities are discussed. We show the risk for different kinds of solutions for the stochastic generalized Nash equilibrium by the conditional value-at-risk formulations. The properties of the stochastic quadratic generalized Nash equilibrium are shown. The smoothing approximations for the expected residual minimization formulation and the conditional value-at-risk formulation are employed. Moreover, we establish the gradient consistency for the measurable smoothing functions and the integrable functions under some suitable conditions, and we also analyze the properties of the formulations. Numerical results for the applications arising from the electricity market model illustrate that the solutions for the stochastic generalized Nash equilibrium given by the ERM model have good properties, such as robustness, low risk and so on.
  • Huijun Fan, Yanmin Zhao, Fenling Wang, Yanhua Shi, Fawang Liu
    Journal of Computational Mathematics. 2023, 41(3): 459-482. https://doi.org/10.4208/jcm.2110-m2021-0180
    CSCD(1)
    By employing EQ1rot nonconforming finite element, the numerical approximation is presented for multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on anisotropic meshes. Comparing with the multi-term time-fractional sub-diffusion equation or diffusion-wave equation, the mixed case contains a special time-space coupled derivative, which leads to many difficulties in numerical analysis. Firstly, a fully discrete scheme is established by using nonconforming finite element method (FEM) in spatial direction and L1 approximation coupled with Crank-Nicolson (L1-CN) scheme in temporal direction. Furthermore, the fully discrete scheme is proved to be unconditional stable. Besides, convergence and superclose results are derived by using the properties of EQ1rot nonconforming finite element. What's more, the global superconvergence is obtained via the interpolation postprocessing technique. Finally, several numerical results are provided to demonstrate the theoretical analysis on anisotropic meshes.
  • Hong-lin Liao, Tao Tang, Tao Zhou
    Journal of Computational Mathematics. 2023, 41(2): 325-344. https://doi.org/10.4208/jcm.2207-m2022-0020
    CSCD(1)
    This is one of our series works on discrete energy analysis of the variable-step BDF schemes. In this part, we present stability and convergence analysis of the third-order BDF (BDF3) schemes with variable steps for linear diffusion equations, see, e.g., [SIAM J. Numer. Anal., 58:2294-2314] and [Math. Comp., 90: 1207-1226] for our previous works on the BDF2 scheme. To this aim, we first build up a discrete gradient structure of the variable-step BDF3 formula under the condition that the adjacent step ratios are less than 1.4877, by which we can establish a discrete energy dissipation law. Mesh-robust stability and convergence analysis in the L2 norm are then obtained. Here the mesh robustness means that the solution errors are well controlled by the maximum time-step size but independent of the adjacent time-step ratios. We also present numerical tests to support our theoretical results.
  • Victor Churchill
    Journal of Computational Mathematics. 2023, 41(2): 246-262. https://doi.org/10.4208/jcm.2110-m2021-0157
    CSCD(1)
    This paper presents an application of the sparse Bayesian learning (SBL) algorithm to linear inverse problems with a high order total variation (HOTV) sparsity prior. For the problem of sparse signal recovery, SBL often produces more accurate estimates than maximum a posteriori estimates, including those that use l1 regularization. Moreover, rather than a single signal estimate, SBL yields a full posterior density estimate which can be used for uncertainty quantification. However, SBL is only immediately applicable to problems having a direct sparsity prior, or to those that can be formed via synthesis. This paper demonstrates how a problem with an HOTV sparsity prior can be formulated via synthesis, and then utilizes SBL. This expands the class of problems available to Bayesian learning to include, e.g., inverse problems dealing with the recovery of piecewise smooth functions or signals from data. Numerical examples are provided to demonstrate how this new technique is effectively employed.
  • Faouzi Triki, Tao Yin
    Journal of Computational Mathematics. 2023, 41(3): 483-501. https://doi.org/10.4208/jcm.2111-m2021-0093
    CSCD(1)
    This paper concerns the reconstruction of a scalar coefficient of a second-order elliptic equation in divergence form posed on a bounded domain from internal data. This problem finds applications in multi-wave imaging, greedy methods to approximate parameterdependent elliptic problems, and image treatment with partial differential equations. We first show that the inverse problem for smooth coefficients can be rewritten as a linear transport equation. Assuming that the coefficient is known near the boundary, we study the well-posedness of associated transport equation as well as its numerical resolution using discontinuous Galerkin method. We propose a regularized transport equation that allow us to derive rigorous convergence rates of the numerical method in terms of the order of the polynomial approximation as well as the regularization parameter. We finally provide numerical examples for the inversion assuming a lower regularity of the coefficient, and using synthetic data.
  • Wei Li, Pengzhan Huang, Yinnian He
    Journal of Computational Mathematics. 2023, 41(1): 72-93. https://doi.org/10.4208/jcm.2104-m2020-0265
    CSCD(1)
    In this paper, a fully discrete finite element scheme with second-order temporal accuracy is proposed for a fluid-fluid interaction model, which consists of two Navier-Stokes equations coupled by a linear interface condition. The proposed fully discrete scheme is a combination of a mixed finite element approximation for spatial discretization, the secondorder backward differentiation formula for temporal discretization, the second-order Gear's extrapolation approach for the interface terms and extrapolated treatments in linearization for the nonlinear terms. Moreover, the unconditional stability is established by rigorous analysis and error estimate for the fully discrete scheme is also derived. Finally, some numerical experiments are carried out to verify the theoretical results and illustrate the accuracy and efficiency of the proposed scheme.
  • Yanping Chen, Xinliang Liu, Jiaoyan Zeng, Lei Zhang
    Journal of Computational Mathematics. 2023, 41(5): 841-865. https://doi.org/10.4208/jcm.2112-m2021-0123
    This paper concerns the convex optimal control problem governed by multiscale elliptic equations with arbitrarily rough L coefficients, which has not only complex coupling between nonseparable scales and nonlinearity, but also important applications in composite materials and geophysics. We use one of the recently developed numerical homogenization techniques, the so-called Rough Polyharmonic Splines (RPS) and its generalization (GRPS) for the efficient resolution of the elliptic operator on the coarse scale. Those methods have optimal convergence rate which do not rely on the regularity of the coefficients nor the concepts of scale-separation or periodicity. As the iterative solution of the nonlinearly coupled OCP-OPT formulation for the optimal control problem requires solving the corresponding (state and co-state) multiscale elliptic equations many times with different right hand sides, numerical homogenization approach only requires one-time pre-computation on the fine scale and the following iterations can be done with computational cost proportional to coarse degrees of freedom. Numerical experiments are presented to validate the theoretical analysis.
  • Xiaoqiang Yan, Xu Qian, Hong Zhang, Songhe Song, Xiujun Cheng
    Journal of Computational Mathematics. 2023, 41(4): 643-662. https://doi.org/10.4208/jcm.2109-m2021-0020
    Block boundary value methods (BBVMs) are extended in this paper to obtain the numerical solutions of nonlinear delay-differential-algebraic equations with singular perturbation (DDAESP). It is proved that the extended BBVMs in some suitable conditions are globally stable and can obtain a unique exact solution of the DDAESP. Besides, whenever the classic Lipschitz conditions are satisfied, the extended BBVMs are preconsistent and pth order consistent. Moreover, through some numerical examples, the correctness of the theoretical results and computational validity of the extended BBVMs is further confirmed.
  • Ming-Jun Lai, Jiaxin Xie, Zhiqiang Xu
    Journal of Computational Mathematics. 2023, 41(4): 741-770. https://doi.org/10.4208/jcm.2201-m2021-0130
    Graph sparsification is to approximate an arbitrary graph by a sparse graph and is useful in many applications, such as simplification of social networks, least squares problems, and numerical solution of symmetric positive definite linear systems. In this paper, inspired by the well-known sparse signal recovery algorithm called orthogonal matching pursuit (OMP), we introduce a deterministic, greedy edge selection algorithm, which is called the universal greedy approach (UGA) for the graph sparsification problem. For a general spectral sparsification problem, e.g., the positive subset selection problem from a set of m vectors in $\mathbb{R}{^n}$, we propose a nonnegative UGA algorithm which needs O(mn2 + n3/∈2) time to find a $\frac{{1 + \in/\beta }}{{1-\in/\beta }}$-spectral sparsifier with positive coefficients with sparsity at most $\left[{\frac{n}{{{ \in ^2}}}} \right]$, where β is the ratio between the smallest length and largest length of the vectors. The convergence of the nonnegative UGA algorithm is established. For the graph sparsification problem, another UGA algorithm is proposed which can output a $\frac{{1 + O/(\in)}}{{1-O/(\in)}}$-spectral sparsifier with $\left[{\frac{n}{{{ \in ^2}}}} \right]$ edges in O(m+n2/∈2) time from a graph with m edges and n vertices under some mild assumptions. This is a linear time algorithm in terms of the number of edges that the community of graph sparsification is looking for. The best result in the literature to the knowledge of the authors is the existence of a deterministic algorithm which is almost linear, i.e. O(m1+o(1)) for some o(1)=O($\frac{{{{(\log \log (m))}^{2/3}}}}{{{{\log }^{1/3}}(m)}}$). Finally, extensive experimental results, including applications to graph clustering and least squares regression, show the effectiveness of proposed approaches.
  • Lei Li, Dongling Wang
    Journal of Computational Mathematics. 2023, 41(1): 107-132. https://doi.org/10.4208/jcm.2106-m2020-0205
    CSCD(1)
    We introduce a new class of parametrized structure-preserving partitioned RungeKutta (α-PRK) methods for Hamiltonian systems with holonomic constraints. The methods are symplectic for any xed scalar parameter α, and are reduced to the usual symplectic PRK methods like Shake-Rattle method or PRK schemes based on Lobatto IIIA-IIIB pairs when α=0. We provide a new variational formulation for symplectic PRK schemes and use it to prove that the α-PRK methods can preserve the quadratic invariants for Hamiltonian systems subject to holonomic constraints. Meanwhile, for any given consistent initial values (p0, q0) and small step size h > 0, it is proved that there exists α*=(h, p0, q0) such that the Hamiltonian energy can also be exactly preserved at each step. Based on this, we propose some energy and quadratic invariants preserving α-PRK methods. These α-PRK methods are shown to have the same convergence rate as the usual PRK methods and perform very well in various numerical experiments.
  • Jinbao Jian, Guodong Ma, Yufeng Zhang
    Journal of Computational Mathematics. 2023, 41(1): 133-152. https://doi.org/10.4208/jcm.2106-m2020-0059
    CSCD(1)
    In this paper, we discuss the nonlinear minimax problems with inequality constraints. Based on the stationary conditions of the discussed problems, we propose a sequential systems of linear equations (SSLE)-type algorithm of quasi-strongly sub-feasible directions with an arbitrary initial iteration point. By means of the new working set, we develop a new technique for constructing the sub-matrix in the lower right corner of the coe cient matrix of the system of linear equations (SLE). At each iteration, two systems of linear equations (SLEs) with the same uniformly nonsingular coe cient matrix are solved. Under mild conditions, the proposed algorithm possesses global and strong convergence. Finally, some preliminary numerical experiments are reported.
  • Dongyang Shi, Houchao Zhang
    Journal of Computational Mathematics. 2023, 41(2): 224-245. https://doi.org/10.4208/jcm.2108-m2020-0324
    CSCD(1)
    The focus of this paper is on a linearized backward differential formula (BDF) scheme with Galerkin FEM for the nonlinear Klein-Gordon-Schrödinger equations (KGSEs) with damping mechanism. Optimal error estimates and superconvergence results are proved without any time-step restriction condition for the proposed scheme. The proof consists of three ingredients. First, a temporal-spatial error splitting argument is employed to bound the numerical solution in certain strong norms. Second, optimal error estimates are derived through a novel splitting technique to deal with the time derivative and some sharp estimates to cope with the nonlinear terms. Third, by virtue of the relationship between the Ritz projection and the interpolation, as well as a so-called "lifting" technique, the superconvergence behavior of order O(h2 + τ2) in H1-norm for the original variables are deduced. Finally, a numerical experiment is conducted to confirm our theoretical analysis. Here, h is the spatial subdivision parameter, and τ is the time step.
  • Wei Yang, Xin Liu, Bin He, Yunqing Huang
    Journal of Computational Mathematics. 2023, 41(2): 263-286. https://doi.org/10.4208/jcm.2112-m2020-0330
    CSCD(1)
    In this paper, we study the a posteriori error estimator of SDG method for variable coefficients time-harmonic Maxwell’s equations. We propose two a posteriori error estimators, one is the recovery-type estimator, and the other is the residual-type estimator. We first propose the curl-recovery method for the staggered discontinuous Galerkin method (SDGM), and based on the super-convergence result of the postprocessed solution, an asymptotically exact error estimator is constructed. The residual-type a posteriori error estimator is also proposed, and it’s reliability and effectiveness are proved for variable coefficients time-harmonic Maxwell’s equations. The efficiency and robustness of the proposed estimators is demonstrated by the numerical experiments.
  • Jing Chen, Zhaojie Zhou, Huanzhen Chen, Hong Wang
    Journal of Computational Mathematics. 2023, 41(5): 817-840. https://doi.org/10.4208/jcm.2112-m2021-0204
    In this article, we propose a new finite element space Λh for the expanded mixed finite element method (EMFEM) for second-order elliptic problems to guarantee its computing capability and reduce the computation cost. The new finite element space Λh is designed in such a way that the strong requirement VhΛh in [9] is weakened to {vhVh; divvh=0} ⊂ Λh so that it needs fewer degrees of freedom than its classical counterpart. Furthermore, the new Λh coupled with the Raviart-Thomas space satisfies the inf-sup condition, which is crucial to the computation of mixed methods for its close relation to the behavior of the smallest nonzero eigenvalue of the stiff matrix, and thus the existence, uniqueness and optimal approximate capability of the EMFEM solution are proved for rectangular partitions in $\mathbb{R}^d$, d=2, 3 and for triangular partitions in $\mathbb{R}^2$. Also, the solvability of the EMFEM for triangular partition in $\mathbb{R}^3$ can be directly proved without the inf-sup condition. Numerical experiments are conducted to confirm these theoretical findings.
  • Maryam Yazdi, Saeed Hashemi Sababe
    Journal of Computational Mathematics. 2023, 41(1): 153-172. https://doi.org/10.4208/jcm.2106-m2020-0209
    CSCD(1)
    In this paper, we introduce a new iterative method based on the hybrid viscosity approximation method for finding a common element of the set of solutions of a general system of variational inequalities, an equilibrium problem, and the set of common fixed points of a countable family of nonexpansive mappings in a Hilbert space. We prove a strong convergence theorem of the proposed iterative scheme under some suitable conditions on the parameters. Furthermore, we apply our main result for W-mappings. Finally, we give two numerical results to show the consistency and accuracy of the scheme.
  • Xiangyu Shi, Linzhang Lu
    Journal of Computational Mathematics. 2023, 41(1): 94-106. https://doi.org/10.4208/jcm.2104-m2020-0233
    CSCD(1)
    This article aims to study the unconditional superconvergent behavior of nonconforming quadrilateral quasi-Wilson element for nonlinear Benjamin Bona Mahoney (BBM) equation. For the generalized rectangular meshes including rectangular mesh, deformed rectangular mesh and piecewise deformed rectangular mesh, by use of the special character of this element, that is, the conforming part(bilinear element) has high accuracy estimates on the generalized rectangular meshes and the consistency error can reach order O(h2), one order higher than its interpolation error, the superconvergent estimates with respect to mesh size h are obtained in the broken H1-norm for the semi-/fully-discrete schemes. A striking ingredient is that the restrictions between mesh size h and time step τ required in the previous works are removed. Finally, some numerical results are provided to con rm the theoretical analysis.
  • Ziang Chen, Andre Milzarek, Zaiwen Wen
    Journal of Computational Mathematics. 2023, 41(4): 683-716. https://doi.org/10.4208/jcm.2110-m2020-0317
    We propose a trust-region type method for a class of nonsmooth nonconvex optimization problems where the objective function is a summation of a (probably nonconvex) smooth function and a (probably nonsmooth) convex function. The model function of our trust-region subproblem is always quadratic and the linear term of the model is generated using abstract descent directions. Therefore, the trust-region subproblems can be easily constructed as well as efficiently solved by cheap and standard methods. When the accuracy of the model function at the solution of the subproblem is not sufficient, we add a safeguard on the stepsizes for improving the accuracy. For a class of functions that can be "truncated", an additional truncation step is defined and a stepsize modification strategy is designed. The overall scheme converges globally and we establish fast local convergence under suitable assumptions. In particular, using a connection with a smooth Riemannian trust-region method, we prove local quadratic convergence for partly smooth functions under a strict complementary condition. Preliminary numerical results on a family of ${\ell _1}$-optimization problems are reported and demonstrate the efficiency of our approach.
  • Weizhu Bao, Quan Zhao
    Journal of Computational Mathematics. 2023, 41(4): 771-796. https://doi.org/10.4208/jcm.2205-m2021-0237
    We propose an accurate and energy-stable parametric finite element method for solving the sharp-interface continuum model of solid-state dewetting in three-dimensional space. The model describes the motion of the film/vapor interface with contact line migration and is governed by the surface diffusion equation with proper boundary conditions at the contact line. We present a weak formulation for the problem, in which the contact angle condition is weakly enforced. By using piecewise linear elements in space and backward Euler method in time, we then discretize the formulation to obtain a parametric finite element approximation, where the interface and its contact line are evolved simultaneously. The resulting numerical method is shown to be well-posed and unconditionally energystable. Furthermore, the numerical method is generalized to the case of anisotropic surface energies in the Riemannian metric form. Numerical results are reported to show the convergence and efficiency of the proposed numerical method as well as the anisotropic effects on the morphological evolution of thin films in solid-state dewetting.
  • Tianqi Wu, Shing-Tung Yau
    Journal of Computational Mathematics. 2023, 41(5): 879-908. https://doi.org/10.4208/jcm.2206-m2020-0251
    We use a narrow-band approach to compute harmonic maps and conformal maps for surfaces embedded in the Euclidean 3-space, using point cloud data only. Given a surface, or a point cloud approximation, we simply use the standard cubic lattice to approximate its ∈-neighborhood. Then the harmonic map of the surface can be approximated by discrete harmonic maps on lattices. The conformal map, or the surface uniformization, is achieved by minimizing the Dirichlet energy of the harmonic map while deforming the target surface of constant curvature. We propose algorithms and numerical examples for closed surfaces and topological disks. To the best of the authors' knowledge, our approach provides the first meshless method for computing harmonic maps and uniformizations of higher genus surfaces.
  • Xiuhui Guo, Lulu Tian, Yang Yang, Hui Guo
    Journal of Computational Mathematics. 2023, 41(4): 623-642. https://doi.org/10.4208/jcm.2108-m2021-0143
    In this paper, we apply local discontinuous Galerkin (LDG) methods for pattern formation dynamical model in polymerizing actin flocks. There are two main difficulties in designing effective numerical solvers. First of all, the density function is non-negative, and zero is an unstable equilibrium solution. Therefore, negative density values may yield blow-up solutions. To obtain positive numerical approximations, we apply the positivitypreserving (PP) techniques. Secondly, the model may contain stiff source. The most commonly used time integration for the PP technique is the strong-stability-preserving Runge-Kutta method. However, for problems with stiff source, such time discretizations may require strictly limited time step sizes, leading to large computational cost. Moreover, the stiff source any trigger spurious filament polarization, leading to wrong numerical approximations on coarse meshes. In this paper, we combine the PP LDG methods with the semi-implicit Runge-Kutta methods. Numerical experiments demonstrate that the proposed method can yield accurate numerical approximations with relatively large time steps.
  • Pengcong Mu, Weiying Zheng
    Journal of Computational Mathematics. 2023, 41(5): 909-932. https://doi.org/10.4208/jcm.2206-m2021-0353
    In this paper, we propose a positivity-preserving finite element method for solving the three-dimensional quantum drift-diffusion model. The model consists of five nonlinear elliptic equations, and two of them describe quantum corrections for quasi-Fermi levels. We propose an interpolated-exponential finite element (IEFE) method for solving the two quantum-correction equations. The IEFE method always yields positive carrier densities and preserves the positivity of second-order differential operators in the Newton linearization of quantum-correction equations. Moreover, we solve the two continuity equations with the edge-averaged finite element (EAFE) method to reduce numerical oscillations of quasi-Fermi levels. The Poisson equation of electrical potential is solved with standard Lagrangian finite elements. We prove the existence of solution to the nonlinear discrete problem by using a fixed-point iteration and solving the minimum problem of a new discrete functional. A Newton method is proposed to solve the nonlinear discrete problem. Numerical experiments for a three-dimensional nano-scale FinFET device show that the Newton method is robust for source-to-gate bias voltages up to 9V and source-to-drain bias voltages up to 10V.
  • Yazid Dendani, Radouen Ghanem
    Journal of Computational Mathematics. 2023, 41(4): 717-740. https://doi.org/10.4208/jcm.2110-m2021-0131
    In this paper we deal with the convergence analysis of the finite element method for an elliptic penalized unilateral obstacle optimal control problem where the control and the obstacle coincide. Error estimates are established for both state and control variables. We apply a fixed point type iteration method to solve the discretized problem.
    To corroborate our error estimations and the efficiency of our algorithms, the convergence results and numerical experiments are illustrated by concrete examples.
  • Yidan Geng, Minghui Song, Mingzhu Liu
    Journal of Computational Mathematics. 2023, 41(4): 663-682. https://doi.org/10.4208/jcm.2109-m2021-0116
    In this paper, we consider the stochastic differential equations with piecewise continuous arguments (SDEPCAs) in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coefficient satisfies the linear growth condition. Since the delay term t-[t] of SDEPCAs is not continuous and differentiable, the variable substitution method is not suitable. To overcome this difficulty, we adopt new techniques to prove the boundedness of the exact solution and the numerical solution. It is proved that the truncated Euler-Maruyama method is strongly convergent to SDEPCAs in the sense of Lq(q ≥ 2). We obtain the convergence order with some additional conditions. An example is presented to illustrate the analytical theory.