• 论文 • 上一篇    下一篇

启发式遗传算法及其应用

金聪   

  1. 湖北大学数学与计算机科学学院 武汉 430062
  • 出版日期:2003-01-20 发布日期:2003-01-20

金聪. 启发式遗传算法及其应用[J]. 数值计算与计算机应用, 2003, 24(1): 30-35.

HEURISTIC GENETIC ALGORITHM AND ITS APPLICATION

  1. Jin Cong (College of Mathematics and Computer Science, Hubei University, Wuhan, 430062)
  • Online:2003-01-20 Published:2003-01-20
在科学实践、工程技术和日常生活中,人们常常会遇到大量的、各式各样的最优化问题.最优化方法在近几十年里获得了巨大的发展,但目前很多方法不同程度上还存在着一些不足之处.尤其是最终所求得的大多为局部最优解,并不是全局最优解.而近年来得到蓬勃发展的遗传算法其本质是一种求解问题的高效并行全局搜索方法.它能在搜索过程中自动获取和
Deeply analyzed the conventional genetic algorithm and for its shortcomings on nonlinear optimization, heuristic genetic algorithm (HGA) is proposed. The simulated results show that the problem can be solved effectively using HGA.HGA makes some improvements on ability of global searching and locally searching. A novel way of solving nonlinear optimization that can not be realized using the general method is proposed.
()

[1] Hilmmelblau D. M., Applied Nonlinear Programming, McGraw-Hill Book Company, 1972.
[2] Wilde D. J, Beightler C. S, Foundations of Optimization, Englewood Cliffs, NJ.: Prentice-Hall,Inc.,1967.
[3] Goldberg D. E, Samtani M. P, Engineering Optimization via Genetic Algorithms, Proceeding ofthe Ninth Conference on Electronic Computation, 1986, 471-482.
[4] 丁承民等,遗传算法纵横谈,信息与控制, 26:1(1997) ,40-47.
[5] 陈国良等,遗传算法及其应用,人民邮电出版社,北京, 1996.
[6] 施阳,李俊等, MATLAB语言工具箱-TOOLBOX实用指南,西北工业大学出版社,西安, 1998.
[7] 马振华等,现代应用数学手册-运筹学与最优化理论卷.清华大学出版社,北京, 1997.
No related articles found!
阅读次数
全文


摘要