• 论文 • 上一篇    下一篇

带门槛不完全Cholesky分解存在的问题与改进

吴建平,王正华,李晓梅   

  1. 国防科技大学计算机学院并行与分布处理重点实验室;国防科技大学计算机学院并行与分布处理重点实验室;装备指挥技术学院 长沙 410073 ;长沙 410073 ;北京3380信箱90号 北京 101416
  • 出版日期:2003-03-20 发布日期:2003-03-20

吴建平,王正华,李晓梅. 带门槛不完全Cholesky分解存在的问题与改进[J]. 数值计算与计算机应用, 2003, 24(3): 207-214.

PROBLEMS AND IMPROVEMENTS TO THE INCOMPLETE CHOLESKY DECOMPOSITION WITH THRESHOLDS

  1. Wu Jianping Wang Zhenghua (Institute of Computer, National University of Defense Technology, Changsha, China, 410073) Li Xiaomei (Institute of Command and Technology of Equipment, Beijing, China, 101416)
  • Online:2003-03-20 Published:2003-03-20
引言 许多物理应用问题求解的核心是如何高效求解稀疏线性方程组.直接解法由于在进行矩阵分解时常引入大量填充元,导致存储量与计算量一般很大,而且当系数矩阵条件数很大时,208数值计算与计算机应用2003年直接法稳定性差,使得任何中间舍入误差均可能引起最终计算结果
In this paper, there have analyzed three problems occurred in the incomplete Cholesky factorization with thresholds for the matrices of symmetric positive definite. First, the drop strategy is used to only a row of the matrix at a time. Based on the idea of dropping the small elements in magnitude, this strategy is extended, that is, several rows of the factor are computed and the drop strategy is exploited for these rows at a time. Second, there may occur pivots of small magnitude or even negative ones. A solution is proposed in this paper. Finally, the incomplete factorization is often difficult to implement efficiently. Several integer vectors are exploited in this paper to solve this problem. Then the efficient implementation of the modified incomplete Cholesky decomposition is in consideration. Analyses and computation experiments show that these techniques are effective.
()

[1] Jia Zhongxiao, The convergence of Krylov subspace methods for large unsymmetric linear systems,Acta Mathematica Sinica, New Series, Vol. 14, No. 4, (1998) , 507-518.
[2] Y. Saad, Iterative methods for sparse linear systems, PWS Publication Corporation, Boston, 1996.
[3] D. P. Young, R. G. Melvin, F. T. Johnson, J. E. Bussoletti, L. B. Wigton, and S. S. Samant.Application of sparse matrix solvers as effective preconditioners. SIAM Journal of Scientific and Statistic Computing, 10(1989) , 1186-1199.
[4] Z. Zlatev. Use of iterative refinement in the solution of sparse linear systems. SIAM Journal of Numerical Analysis, 19(1982) , 381-399.
[5] Y. Saad, ILUT, A dual threshold incomplete LU factorization, University of Minnesota Computer Science Department, Tech. Rep., No. Unsi-92-38, 1992.
[6] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Mathematics of Computation,31:137(1977) , 148-162.
[7] 雷光耀,张石峰,阶矩阵及其在传统预处理方法中的应用,计算物理,8:2(1991) ,196-202.
No related articles found!
阅读次数
全文


摘要