• 论文 • 下一篇
潘佳佳1,2, 李会元1
潘佳佳, 李会元. 二阶椭圆问题的弱迦辽金四边形谱元方法[J]. 数值计算与计算机应用, 2021, 42(4): 303-322.
Pan Jiajia, Li Huiyuan. WEAK GALERKIN QUADRILATERAL SPECTRAL ELEMENT METHODS FOR SECOND ORDER ELLIPTIC EQUATIONS[J]. Journal on Numerica Methods and Computer Applications, 2021, 42(4): 303-322.
Pan Jiajia1,2, Li Huiyuan1
MR(2010)主题分类:
分享此文:
[1] Patera A T. A spectral element method for fluid dynamics:Laminar flow in a channel expansion[J]. Journal of Computational Physics, 1984, 54(3):468-488. [2] Maday Y, Patera A T. Spectral element methods for the incompressible Navier-Stokes equations[C]. In IN:State-of-the-art surveys on computational mechanics (A90-4717621-64). New York, American Society of Mechanical Engineers, 1989, 1:71-143. [3] Boyd J P. Chebyshev and Fourier Spectral Methods[M]. Courier Corporation, New York, 2001. [4] Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods:Evolution to Complex Geometries and Applications to Fluid Dynamics[M]. Springer Science & Business Media, 2007. [5] Karniadakis G E, Sherwin S J. Spectral/Hp Element Methods for Computational Fluid Dynamics[M]. Oxford University Press, New York, 2005. [6] Li H, Shen J. Optimal error estimates in Jacobi-weighted Sobolev spaces for polynomial approximations on the triangle[J]. Mathematics of Computation, 2010, 79(271):1621-1646. [7] Samson M D, Li H, Wang L L. A new triangular spectral element method I:implementation and analysis on a triangle[J]. Numerical Algorithms, 2013, 64(3):519-547. [8] Shan W, Li H. The triangular spectral element method for Stokes eigenvalues[J]. Mathematics of Computation, 2017, 86(308):2579-2611. [9] Shen J, Wang L L, Li H. A triangular spectral element method using fully tensorial rational basis functions[J]. SIAM Journal on Numerical Analysis, 2009, 47(3):1619-1650. [10] Sherwin S J, Karniadakis G E. A new triangular and tetrahedral basis for high-order (hp) finite element methods[J]. International Journal for Numerical Methods in Engineering, 1995, 38(22):3775-3802. [11] Warburton T C, Sherwin S J, Karniadakis G E. Basis functions for triangular and quadrilateral high-order elements[J]. SIAM Journal on Scientific Computing, 1999, 20(5):1671-1695. [12] Bey K S, Oden J T. hp-version discontinuous Galerkin methods for hyperbolic conservation laws[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 133(3-4):259-286. [13] Egger H, Waluga C. hp analysis of a hybrid DG method for Stokes flow[J]. IMA Journal of Numerical Analysis, 2012, 33(2):687-721. [14] Bernardi C, Maday Y, Patera A T. A new nonconforming approach to domain decomposition:the mortar element method[J]. In:Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. XI, ed. by H. Brezis, J. L. Lions (Longman, Harlow), 1994, 13-51. [15] Li H, Zhang Z. Efficient spectral and spectral element methods for eigenvalue problems of Schrödinger equations with an inverse square potential[J]. SIAM Journal on Scientific Computing, 2017, 39(1):A114-A140. [16] Wang J, Ye X. A weak Galerkin finite element method for second-order elliptic problems[J]. Journal of Computational and Applied Mathematics, 2013, 241:103-115. [17] Zhai Q, Xie H, Zhang R, Zhang Z. Acceleration of weak Galerkin methods for the Laplacian eigenvalue problem[J]. Journal of Scientific Computing, 2017, 1-21. [18] Zhai Q, Xie H, Zhang R, Zhang Z. The weak Galerkin method for elliptic eigenvalue problems[J]. Commun. Comput. Phys., 2019, 26(1):160-191. [19] Zhang R, Zhai Q. Weak Galerkin finite element methods for PDE eigenvalue problems (in Chinese)[J]. Sci. Sin. Math., 2019, 49:1-16. [20] Mu L, Wang J, Ye X. A new weak Galerkin finite element method for the Helmholtz equation[J]. IMA Journal of Numerical Analysis, 2014, 35(3):1228-1255. [21] Mu L, Wang J, Ye X, Zhang S. A weak Galerkin finite element method for the Maxwell equations[J]. Journal of Scientific Computing, 2015, 65(1):363-386. [22] Wang J, Ye X. A weak Galerkin finite element method for the Stokes equations[J]. Advances in Computational Mathematics, 2016, 42(1):155-174. [23] Liu X, Li J, Chen Z. A weak Galerkin finite element method for the Navier-Stokes equations[J]. Journal of Computational and Applied Mathematics, 2018, 333:442-457. [24] Mu L, Wang J, Wang Y, Ye X. A weak Galerkin mixed finite element method for biharmonic equations[J]. Numerical Solution of Partial Differential Equations:Theory, Algorithms, and Their Applications, 2013, pages 247-277. [25] Gao F, Mu L. On L2 error estimate for weak Galerkin finite element methods for parabolic problems[J]. J. Comput. Math., 2014, 32(2):195-204. [26] Wang J, Wang C. Weak Galerkin finite element methods for elliptic PDEs (in Chinese)[J]. Sci. Sin. Math., 2015, 45:1061-1092. [27] Mu L, Wang J, Ye X. A weak Galerkin finite element method with polynomial reduction[J]. Journal of Computational and Applied Mathematics, 2015, 285:45-58. [28] Mu L, Ye X, Wang J. Weak Galerkin finite element methods for second-order elliptic problems on polytopal meshes[J]. Int. J. Numer. Anal. Model., 2015, 12:31-53. [29] Wang J, Ye X. A weak Galerkin mixed finite element method for second order elliptic problems[J]. Mathematics of Computation, 2014, 83(289):2101-2126. [30] Wang J, Wang R, Zhai Q, Zhang R. A systematic study on weak Galerkin finite element methods for second order elliptic problems[J]. Journal of Scientific Computing, 2018, 74(3):1369-1396. [31] Wang J, Zhang Z. A hybridizable weak Galerkin method for the Helmholtz equation with large wave number:hp analysis[J]. International Journal of Numerical Analysis and Modeling, 2017, 14(4-5):744-761. [32] Pan J, Li H. A penalized weak Galerkin spectral element method for second order elliptic equations[J]. Journal of Computational and Applied Mathematics, 2021, 386:113-228. [33] Monk P. Finite Element Methods for Maxwell's Equations[M]. Numerical Mathematics and Scientific Computation. The Clarendon Press Oxford University Press, 2003. [34] Zaglmayr S. High Order Finite Element Methods for Electromagnetic Field Computation[M]. Ph.D. thesis, Institute for Computational Mathematics, Johannes Kepler University Linz, 2006. [35] Szegö G P. Orthogonal Polynomials[M], volume 23. American Mathematical Society, New York, 1939. [36] Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods:Fundamentals in Single Domains[M]. Springer Science & Business Media, Berlin, 2007. [37] Shen J, Tang T, Wang L L. Spectral Methods:Algorithms, Analysis and Applications[M], volume 41 of Springer Series in Computational Mathematics. Springer Science & Business Media, Berlin, 2011. [38] Guo B Y, Shen J, Wang L L. Generalized Jacobi polynomials/functions and their applications[J]. Applied Numerical Mathematics, 2009, 59(5):1011-1028. [39] Babuška I, Guo B. Direct and inverse approximation theorems for the p-version of the finite element method in the framework of weighted Besov spaces. Part I:Approximability of functions in the weighted Besov spaces[J]. SIAM Journal on Numerical Analysis, 2002, 39(5):1512-1538. [40] Amore P, Boyd J P, Fernández F M, Rösler B. High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences[J]. Journal of Computational Physics, 2016, 312:252-271. |
[1] | 单炜琨, 李会元. 任意三角形Laplace特征值问题谱方法的数值对比研究[J]. 数值计算与计算机应用, 2015, 36(2): 113-131. |
[2] | 尹云辉, 祝鹏, 杨宇博. 奇异摄动问题在Bakhvalov-Shishkin网格上的有限元超收敛[J]. 数值计算与计算机应用, 2013, 34(4): 257-265. |
[3] | 刘会坡,严宁宁. Stokes方程最优控制问题的超收敛分析[J]. 数值计算与计算机应用, 2006, 27(4): 281-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||